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Preface

The purpose of this thesis was to develop experimental descriptive regression models for esti-

mating the job performance, or productive capacity (PC), of Air Force Aerospace Ground Equip-

ment (AGE) mechanics. The data that I used were collected under the Air Force's Productive

Capacity Project by myself and other personnel from the Manpower and Personnel Research Divi-

sion, Human Resources Directorate, Armstrong Laboratory (AL/HRM), and contractor personnel

from the iHuman Reso, rces Research Organization 'HumRRO), Alexandria, VA, and the Systems

Research and Applications (SRA) Corporation, San Antonio, TX. I was fortunate enough to work

with these cc'-,i tent people in the project planning, data collection and preliminary aralyses of

the collectec, da'a.

The Pruductive Capacity Project is part of an ongoing research and development effort aimed

at identifying methods for best using Air Force personnel. The Air Force recognizes that in this

day of force downsizing and shrinking defense budgets, it must make optimal use of its personnel

resources. Making best use of personnel resources implies the need to be able to validly and reliably

measure and quantify airmen job performance. It also implies the need to be able to model, or

predict, the job performance of Air Force applicants and incumbent personnel. Mathematical

modeling of job performance can con .ribute substantially to the Air Force's ability to better plan

and use its manpower resources. This thesis research fits into the bigger picture of optimal use of

resources by providing analyses of the effects of two important predictors, aptitude and expei.ence,

on airmen job performance.

This thesis would not have been possible without the continuo s help and guidanc- from

the personnel of AL/HRM. I am most indebted to Ms. Jacobina Skin er for her enormous help

in gathering background material and in providing non-stop consultatio is throughout.. I am also

grateful to Mr. Bill Glasscock for his help in creating the impeccable data files that were provided



to me. And, this thesis would literally not have been possible if Lieutenant Colonel Roger Alford

had not granted me permission to use the Project data. My thanks goes to all of them.

Next, I wish to express my appreciation to Professor Daniel Reynolds for serving as the thesis

advisor. His continual guidance saved me from going too far astray on many occasions. And, I say

thanks to Lieutenant Colonel Kenneth Bauer for his help and patience while serving as a reader

and department representative for this effort.

A would be remiss if I did not thank my many classmates who helped me through this effort.

In particular, I extend my appreciation to Captains Tim Mott, Randy McCanne and Tom Sterle

for their unending moral support.

Last, and most of all, I wish to thank my loving and supportive wife, Mary Jean, and my

children for supporting me and tolerating my absence (even when I was there).

Robert S. Far'euff
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Abstract

This study investigated the effects of mechanical aptitude and job experience (.n the job

performance of 204 Air Force Aerospace Group Equipment (AGE) mechanics. Job performance

was expressed as productive capacity (PC), which is derived from estimated performance times on

job tasks. PC measures were derived for 50 tasks typically performed by airmen in the specialty.

Aptitude measures took the form of Mechanical pe-centile composite scores on the Armed Services

Vocational Aptitude Battery (ASVAB). A second-order logistic model was used to regress PC on

aptitude and experience at the task level and at the overall job, or aggregate, level. Model R 2s were

generally iow. For the tasks, R 2s ranged from .01 to .13, and for the aggregate model the R 2 was

about .16. Generally, experience was a significant predictor but aptitude was not. There was also

no indication of an aptitude/experience interaction. These results were verified through forward

stepwise regression. There was some evidence that airmen may experience some skill degradation

on production-type tasks at around the six year point as they transition to supervisory roles.

X



PREDICTIN(G TII P: OI) lVI (IIA(ITY O!F A"kIIR FORCE

AEROSPACE (;ROIUND IQIIPMI.NT PERSONNEL USING

APTITUDE ANID EXPERIENCE MEASUREIS

I. Introduct11ion

1.1 General Is.sue.

Over the last several years, the Air Force has conducted numerous research activities aimd 4t

developing sound ways of memsuring the job performance of its personnel. These research activities

were ,he result of three primary requirements (16:1) (30:i). First, program managers in the Air

Force's manpower, personnel and training communities expressed concern that job performance

measures were needed for the evaluation of their training and selection programs. Second, managers

of Air F'orce research and development (R&D) programs needed job performance measures to serve

as objective criteria for assessing the impact of various factors on individual and unit effectiveness.

The third and most pressing requiremtent was a directive issued to the armed services in 1980 Iw

the Assistant Secretary of Defense (Manpower, Reserve Affairs and Logistics). The directive tasked

the services to link their enlistment aptitude standards to job performance. This of course required

the services to develop valid job performanue measurement systems. Adding to the force of the

directive, the House Committee on Appropriations tasked the Office of the Secretary of Defense it,

1983 to provide direct oversight for joint-service research activities to address the mveasurement of

military job pcrformance an(l t lie linkage of job performance to enlistment standards.

These initial requirements provided the impetus for the planning and execution of several nma-

jor R&D efforts by the services throughout the 1980s. These research efforts were accomplished pri-

marily under a joint-service program called the Joh Performance Measurement (.1PM)/Enlistnmen:

Standards Project.



By 1990. the Air Force had developed a detailed ',A) perforn-aice measurement system and

had essentially fulfilled all the initial requirements. The Air Force, however. did not elect to

abandon its research on job performance. Instead, it began the Productive Capacity Project in

1990 to continue its research on the development and potential uses of job performance nleasur';s.

The Air Force felt that much more could be gained through job performance R&,D. It rccognized

that job performance research could be of great potential alhue in force acquisition and manpower

modeling and planning. For instance, it, saw that if job performance could be modeled or predicted

for those desiring to enter the service, those who would likely perform well could be identified for

selection. Also, the Air Force saw that if it could model or predict. the performanze of its incumbent

personnel, airmen could potentially be allocated or assigncd to jobs so that manpower resources

are best used.

The need for sound manpower modeling and planning has been highlighted by several recent

events which include a virtual end to the Cold War, Operations Desert Shield and Descrt Storm,

sending of troops to United Nations (UN) sponsored activities, defense budget cuts, and force

downsizing (30:i). There seems to be a trend of increasing world instability and a decreasing

military to deal with it. What the future likely holds for the military is increasing demands placed

on a smaller force. There is no doubt then that manpower resources must be planned and used

wisely. This means the Air Force must be able to validly measure job performance and, more

importantly, be able to predict it for its personnel.

Since the Air Force does not have a crystal ball to help it I.o pr-dict. the performance of if its

applicants and incumbents, it has typically relied on job performance models to do the prediction.

The most frequently used models have been regression-ba.sed mathematical models.

Unfortunately, the development of such models can be frustral.ing. Development of job per-

formance models involves numerous elusive problems that have plagued Industrial/Organizational

Psychologists and other analysts for years. For instance. developers ofjob performance toodels typ-

2



ically must define job performance, figure out how to accurately measure it, decide which factors

influence it. and figure out how the influencing factors (called predictors) mathematically relate to

pcrforraance measures-none of these have proven to be a trivial undertaking. Despite the diffi-

culties in developing mathematical prediction models, the need for them exists, and the Air Force

continues to try to develop them.

To be successful in developing mathematical models for predicting job p,.,rm:irncf, thc A.i

Force must continue to accomplish the following items:

* Define job performance.

* Develop valid and reliable measures of job performance as defined.

* Apply the job performance measures to a representative sample of incumbent airmen.

* Identify factors likely affecting job performance (predictors).

* Look for mathematical relationships hctween predictor variables and the job perfor,.•,-e

measures of the airmen sample, and identify significant relationships.

* Specify an appropriate mathematical model that relates the significant, predictor variables to

job performance measures.

e Validate the mathematical model, perhaps on another independent sample of airmen.

It is important to point out that the above itenms represent a continual, iterative process and not.

a one-time-through list. The process can be viewed as having three distinct, components or piha.'os

which are illustrated in Figure 1.

The process components are job performance measurement, job performance modeling and

nmodel validation. The process components and their subitems frequently require revisiting as

more job performance measurement knowledge is gained. Each job performance research effort

seems to contribute a little more to the job performance knowledge base whil(e at the same time

creating as many new research questions as it answered. Progress toward developme'mnt of sound

:3



13 Define Job Perform an-

C Develop Valid and Reliable Measures of Job Pefornance JOB PERFORMANCE MEASUREMENT

10 Collect Job Perform ance Data

* Identify lrPeeicto1

I Identify Significant Relationships Between All Factors JOB PERFORMANCE MODELING

* Specify a Mathematical Model For Predicting Performance]

*4 Va-i'date the Mathemnatical Model MODEL VALIDATION

Figure 1. Job Performance Model Development Process

job performance measures and valid job performance models has been slow and has come in small

increments. Much progress is yet to be made.

Whereas the joint-service J PM Project addressed mainly the job performance measurement

component of the modeling process. the current Productive Capacity Project is attempting to

,.ddress all of them. Initially under the Productive Capacity Project, the job performance measure-

ment component of the modeling process was addressed-job performance was defined, experimen-

tal measures of job performance were developed, and the measures were applied to personnel in

four Air Force Specialties (AFSs) (21). The next step was to proceed to the job performance mod-

eling phase. This required identification of factors likely affecting job performance, specification of

mathematical relationships between such factors and job performance, and formulation of proto-

type mathematical models expressing the relationship between the factors and job performance. It

was this job performance modeling phase that provided the basis for this thesis.

: ,/ . /• .1



1.2 Statement of the Problem.

The general problem facing the Air Force is that although it could greatly benefit from the

ability to forecast the future job performance of applicants and incumbents, it is currently limited

in its ability to do so. Development. of job performance prediction models has not yet progressed

to the point where current models are suitable for operational use. If suitable models are to be

developed, the model development process nmust continue.

On a much smaller scale, the Air Force would like to use the data collected under the Produc-

tive Capacity Project to develop experimental regression-based mathematical models for relating

job performance measures co certain predictor variables. The predictor variables the Air Force

wishes to consider are mental aptitude and job experience.

The purpose of this thesis was to address this smaller scale problem by performing the re-

quired regression analyses on the Productive Capacity Project data to obtain the model parameter

estimates needed to formulate an experimental model. In terms of the model development process

expressed in Figure 1, this thesis addressed the last two items of the model development component,

given the Productive Capacity Project data and the predictors, aptitude and experience.

1.3 Research Objectives.

1.3.1 Formulate a Productive Capacity Measure from Estimated Task Performance Times.

- The job performance data collected under the Productive Capacity Project were in the form of

e timated performance times on various job tasks specific t.o each of four jobs studied.

In their raw form, the estimated performance times were of limited value. One problem with

th m is that the raw times themselves communicate lit.t!e about an individual's relative level of job

performance. In order to assess performance level, one must first. have knowledge about how others

perform on the tasks, such as how long on average it takes people to do the tasks. Another problem

with raw time data is that they do not have meaning outside of the associated tasks. The task

o5



performance times have meaning only within a task wi,hin a job, and not across tasks or across jobs.

Comparing performance times across tasks is like the proverbial comparison of apples to oranges.

To illustrate these problems, consider a two-task scenario where the average times to complete the

two tasks are 10 and 20 minuteb, respectively. Assume all individual completes the first task in 15

minutes, and the second in 15 minutes as well. Without also considering the average performance

times for the tasks, the individual's performance times suggest that performance was comparable

on the tasks. But, wlen considering the average performance times, it can readily be seen that

the individual took significantly longer than average to complete the first, and considerably shorter

to complete the second. There is obviously a difference in performance levels across the two tasks

that cannot be seen from the raw data.

This implies a need to standardize the performance time data. One possible standardization

could be obtained through forming a ratio of the time data to a constant, say the task mean. This

transformation of the time data would have the desired affect of making the resulting measure

comparable across tasks. Such standardization is necessary both for making comparisons across

tasks and for aggregating task-level data into overall job-wide measures that have meaning in and

of themselves.

The first research objective was therefore, to find a suitable transformation of the performance

time data, to standardize it. A transformation used by the Air Force in previous R&D efforts was

to create a productive capacity (PC) measure from the performance time data (5) (13) (21). A PC

measure is intended to express job performance in terms of how fast. an airmen can perform a piece

of work in reference to a standard perb-inidnce time. It so happens that formulating a PC measure

from the task performance times can standardize the data, giving it broader interpretability. For

instance, the original PC formulation proposed by Carpenter, Monaco. O'Mara and Teachout is

tl/t. where t' is the fastest time in which a task can be cnmpleted and I is an individual's raw

performance time (5:21). With this formulation. PC' always ranges from zero to one and can

7 --.. .-- -, -- -:



be interpreted as an individual's output as proportion of maximum possible output. Other PC

formulations also provide similarly helpful standardizations and interpretations.

1.3.2 Select a Task Weighting Scheme. The second research objective was to determine

S" .a weighting scheme for assigning differing levels of import ance to tasks when aggregating task-level

measures into overall job cr aggregate measures

No weighting of the tasks implies that the performance on each task should be allowed to

equally influenze overall PC. This was considered a questionable practice since tasks were known

to differ on such dimensions as criticality, learning difficulty, time required to perform them, and

percent of time airmen spend doing them (40). Since the tasks were known to differ in importance

along such dimensions, it was recognized that one or more dimensions could provide numerical

values to serve as task weights that would help in better defining overall PC.

The second objective was, then, to identify an appropriate dimension from which to derive a
• /

task weighting scheme, followed by actual computation of task weights.
*/.1

1.3.3 Aggregate the Task-Level Data iato an Orerall Productive Capacity Measure.

The third objective '.i to determine an appropriate way of computing an individual's overall

or aggregate productive capacity, using the PC measures computed at the task level. Task-level

performance data can provide some limited insight into airmen job performance, but of ultimate

importance to the Air Force is how well airmen perform overall. This is because Air Force jobs tend

to he multifaceted requiring the performance of a variety of tasks. Jobs may also frequently change

in scope. Because Air Force jobs do tend to require a variety of task skills, task-level performance

data must be collapsed into overall measures that reflect an airman's ability to meet a job's overall,

multifaceted demands.

The third objective was, therefore, to determine and apply a means of aggregating the task-

level data into overall measures of job performance.



1.3.4 Develop Prediction Mlodels. The fourth and most important, objective was to de-

velop descriptive regression models for relating tas;k-level and overall PC to the predictors, aptitude

and expet" ce. The purpose of the regression models was to express how aptitude and experience

appear to effect PC.

Numerous possibilities existed for the functional form of regression models. Possibilities con-

sidered included first-order and higher-order linear models, learning curve-type logarithmic models

and logistic models. The objective was to select a reasonable form for the regression models, de-

pending on the formulation of the PC measure, followed by estimation of the model parameters

using appropriate techniques. As an adjunct to the research objective, the model was evaluated

through residual analysis and through comparison of the model results to other performance mea-

sures and previous studies.

In short, the fourth objective was to select an appropriate regression model, estimate its

parameters and analyze its results.

1.4 Scope.

Under the Productive Capacity Project, Leighton and others collected performance data on

four Air Force Specialties (21). This thesis will concentrate on the analysis of data from one of these

jobs, 454X 1, Aerospace Ground Equipment. It was limited to the study of a single job to keep the

size of the effort manageable. The methodology developed via this single-job research should find

application in the analysis of the three remaining jobs by the project sponsor, the Manpower and

Personnel Research Division, Human Resources Directorate, Armstrong Laboratory (AL/HRM).

1.5 Assnumptions.

Throughout this research effort it was assumed the job performance measures derived from

the supervisors' task time estimates are v'alid and reliable. In very general terms, valid means



that the measures accurately measure what they purport to measure-the true job performance of

the individuals studied. In equally general terms, reliability means that the PC measures can be

consistently, collected. Siegel and Lane (1974) describe reliability as a demonstration that measures

do not fluctuate unduly over timc as a result of something inherent in the test itself
(including scorer subjectivity), the transitory nature of the function being assessed,
or by factors extraneous to the particular behavior the test is designed to evaluate.
(37:125)

1.6 Limitations.

A significant limitation to this thesis involves the interpretation and usability of the results. As

mentioned, the goal of the thesis is to develop an experimental mathematical model for predicting

the job performance of enlisted personnel in AFS 454X1, Aerospace Ground Equipment. The

experimental model is to provide some insight into how the predictors, aptitude and experience,

might influence an experimental measure of job performance, PC.

It must be stressed that the PC measurement methodology was still in its early stages, and

the current PC measure was previously untested. Also, the model or models developed as part

of this thesis include only a limited number of possible predictors. The results, therefore, are not

appropriate for use in operational manpower decisions or for use in addressing any other operational

concerns. The results are suitable for providing a basis for future research, and for providing very

general ideas about how and which factors might affect job performance.

1. 7 Summary.

The Air Force has recognized that it could benefit from measuring and predicting the job

T performance of both its current personnel and its applicants. It has undertaken several research

* projects with the aim of developing valid job performance measures. The Air Force's most recent

i R&D efforts have begun to investigate the potential uses of job performance measures in manpower

and personnel decisions, and force planning and modeling.

9



This thesis contributes to the Air Force's R.&.D efforts by addressing the job performance mod-

eling phase of the job performance model development process (see Figure 1) using data collected

under the Productive Capacity Project. The remainder of this thesis documents this research.

Chapter 2 provides an in-depth disrussion of background material re,, iewed as a first step in under-

standing the relevant research issues. It provides an overview of the model development process,

and a chronology of previous research while highlight'ng those items relevant to the current research

objectives. Chapter 3 describes the research methodology used to prepare the data for analysis,

and further describes how the regression models were estimated. It includes details of the data

editing procedures, computation of aggregate PC measures, and the regression models used. Chap-

ter 4 provides the results and pertinent discu.ssion concerning the research findings. It provides

regression results to include the estimated parameters and relevant statistics of model fit. Chapter

4 also includes correlational analyses of the model predicted values with other job performance

measures. It concludes with a graphical representation of the estimated models. And finally, Chap-

,er 5 provides a summary of the research, important conclusions and recommendations for further

research.

10
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II. Literature Review

In Chapter I it wa6 explained how the primary research objective of this thesis was the

development of experimental regression- based models for predicting job performance given the

subjects' aptitude and experience. With this in mind, this chapter provides a background of

* I information relevant to this thesis, couched in terms of a modeling scenario. The review thus

begins with a brief overview of the modeling concept.

2.1 Overview of Modeling.

Frequently, R&D efforts involve the study and analysis of processes or cystems. Such processes

4 or systems are often very complex or not well understood. Usually the analyst desires to study

a system in order to better understand it and to try to specify the relationship between system

inputs and outputs.

Understanding of a system is often gained and advanced through development of a in.9del

representing the system. According to Law and Kelton, a model is an abstract "representation

of a system developed for the purpose of studying that system." (20:3). Figure 2 depicts the

relationship between an actual system and the system model. The actual system usually tends to

be complex and the relationship between the inputs and outputs is usually not clearly defined or well

understood. TAhe system model attempts to clearly define the system and specify the relationships

between the inputs and outputs.

It must be pointed out that not all models are good models. Some do not properly represent.

the system, some oversimplify the system and some can be as complex as the system itself. In

general, a good model is one which is as simple as poisible while still adequately representing the

associated system.
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(Predictors) ___________ (Estimated Response)

Input 1 (x ~)MATHEMATICAL
MODEL

Input 2 (X2) Estimated Output (Y)

f (x 1 x2  ,Xk)
Input k(x d

Figure 3. Graphical Representation of a Mathematical Model

There are many types of models. These include mathematical models, conceptual mnodels,

computer models, and simulation models, to name a few. Of primary concern to the current

research were mathematical modeis because these were the type requiring development.

A mathematical model is a model in which the system is represented as a mathematical

relationship between the system inputs and system outputs. In general, a mathematical model can

expressed as in Figure 3.

The black box in Figure 3 represents the mathematical model which is generally some mathe-

matical function of the input variables. Derivation of the mathematical function relating the inputs

and output generally involves rigorous experimentation and statistical analyses to answer questions

like the following:

1. Which input variables should be included?

2. Should the variables be examined in their original form, or should they be transformed?

3. How complex a model is necessary? (4:4-6)

Answering questions like those above requires application of one or more mathematical techniques.

One frequently applied technique is regression analysis which is oft~en used in analysis of linear

mathematical models. Linear mathematical models and linear regression are discussed in the

following section.

13



2.1.1 Linear Models and Linear Regression. Linear mathematical models, like all

mathematical models, relate system ouutllut to inputs via mathematical functions. In linear models

and most regression applications, the input variables are frequently referred to as predictors, and

the output is often called the response. Tile predictors are often referred to as zk, and response as

What distinguislis a linea, model from other mathematical models is that the mathematical

function relating the response to the predictors is linear with respect to the coefficients associated

with the function's terms. In other words, a linear model is one that can be expressed as in

Equation 1 (4:36).

Y =#IZI +02Z2+ ... + pp+•(1)

where

Y = the response

Z 1 , Z 2, ... Zp = specified functions of the predictor(s), XL

,31,02 ..... 3p = model coefficients, or parameters

= model error terms, representing the deviation of

the system data points from the underlying model.

Note that for a model to be linear, it need only be linear in terms of the 13 coefficients. The

functions, Z, need not be linear functions of the predictors. The Z functions are often higher-order

forms of the predictors (e.g., x4) or interaction terms (e.g., xZklx.) to account for curvature in

the curve or surface defined by the model. The actual specification of the Z functions depends

on the nature of the data and the underlying mathematical relationship between the predictor

and response. The analyst frequently includes various Z functions because of prior knowledge or

hypotheses about the system under study. Also, preliminary analyses and data exploration can

provide insight, as to the specification of the Zs.

14



"It is important at this point to make a distiuction betwee:i mecanistic and empirical math-

ematical models (4:10-11). A mechanistic model refers to the true underlying mathematical rela-

tionship between the input and output variables. An empirical model is an approximation of the

true relationship, estimated from data sampled from the system in question. Specification of the

actual mechanistic model is almost always impossible or impractical due to such things as inea-

surement and sampling error, and limited dat.a. Therefore, it is usually the goal of the analyst to

derive an empirical model using a sample of system data.

Given a linear mathematical model of the form expressed in Equation 1, linear regrcssion

analysis is frequently performed to aid in deriving the empirical model. Linear regression is a

techrique for obtaining estimates of the j paraImeters, given a set cf predictor and response data.

After estimation of the parameters, an empirical linear mathematical model can be expressed for

"the system in question.

Neter, Wasserman and Kutner describe regression models as serving three primary purposes

(27:31). These are description. control and prediction. To use a regression model for description

means to estimate the model parameters so that the relationship between the variables can be

specified and the model can thus be used to desc ibe the system. To use regression models for control

means to specify the relationship between the predictors and response so that system specifications

can be adhered to. Fina!ly, as the name implies, prediction means the use of regression models to

predict or forecast the system response given known levels of the predictors. The three purposes

may overlap in a given study. It was previously mentioned that the Air Force would like to develop

models for prediction of airma, jot) performance. This thesis was designed to contribute to the

model development process hy developing regression models more for description than prediction.

Development of such descriptive models is an integral part of the model development proces.s as

efforts are made to better understand the nature of the relationship between potential predictors

and the response.

15



The most common method of obtaining estimates for the J3 parameters in linear regression

is the method of least squares. In least squares, the model parameters are estimated such that the

resulting equation they define represents a response curve or surface that minimizes the urum of the

squared distances from the actual data points to the curve or surface tfiat is estimated. Application

of linear regression requires the assumptions that the values of the predictor variables for a given

set of data are known constants, and also that the 3s are constants that require estimation. Linear

regression further assumes that the model error terms, (, are independent random variables that are

distributed such that they have a mean of zero. That is to say. given a fixed level of the predictors,

on repeated sampling, the error is assumed to be distributed such that its nean is zero. This means

that the expected value of the response, Y (denoted E(Y)) is OIZI + 0.2Z2 + ... + 3Zp since the

Os and Zs are constants.

Least squares is concerned with minimizing the squared distance between each observed Y

and the its expected value, 31ZI +132'2+... +OZ. The equation to be minimized in least squares

is expressed in Equation 2 (27:39).

Q2 0' • 0, 1 Z1, - 32.Z2, - .. PZP,)2 (2)
s=1

where

Q = the exprcssod sum

= obserration number

= total number of observations

= the response for obsertiatton i

Z1, Z'.i ... Z,,, = sprcifihd functmons of the

predictor(.s) for observation i

i,• ..32,.3 = parameters 1o b esitmated.
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Equation 2 is minimized with respect to the fis using standard calculus minimization tech-

niques. The minimization yields the least squares estimators for the #s. The estimators are

, , ' ' frequently referred to ;vs the Js. Least squares estimators, or ks, have the appealing property of

being minimum variance, unbiased estimnators of actual 13s. Having computed the #s, the empiri-

A ,cal regression model can be stated and thL system response can be estimated, or predicted, given

"specified levels of the predictors. The estimated response is frequently referred to as 1'.

It. was previously mentioned that it was assumed in linear regression, that the erro, terms, C,

were distributed for a given level of the predictors, such that their mean is zero. It is often further

assumed that the c not only have a mean of zero, but are normally distributed with mean zero and

variance a 2 (c -. A(O, a')). The normality assumption allows certain statistical inferences to be

made concerning the regression results.

Prior to discussing statistical inferences about the regression results, the following discussion

is included to show that the assumption of error terms being distributed N(0,0'2 ) implies that the

Ys are likewise distributed normally. This result has a direct impact on the statistical inferences

which can be made. Consider Equation I and assume C -- N(O,oTr). Since the predictors and the

"model parameters are constants, Y can be shown to be distributed with variance 0,
2 , the same

. / variance as the error term. Since the predictors and the parameters are constants, let the right-

hand side of Equation 1 be expressed as c + f. Next, let. the variance of Y (denoted as V(Y)) be

written as I(c + ) which equals simply V(e). It follows then that V(Y) = V(() = -O2 . Further,

* "since it is a.ssui•ed that c is distributed N(O, or) and that Y = c+ e, Y not. only has a variance a

it is distributed N(c, -T)

The assumpt ion that the error terms, e, and thus the I's are normally distributed is important

when making inferences concerning the Os. Since it can be shown that the fs are linear combina-

tions of the Ys. the 14s are likewise normally distributed. This fact. means that the I distribution

can be used Io make inferences about the 3s. The following discussion of inferential statistics

17
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commonly used with linear regression is an overview of the more in-depth coverage given by Neter,

Wasserman and Kutner (27).

Following linear regression, it is common to test whether a given flk is significantly different

from zero. Following are the null and alternative hypotheses for such a test.

H0 :k = 0

The test statistic to is computed as to = - where &(/3 t) is the estimated standard error

of 3k. The decision r,.ile for deciding the out come of the test is as follows.

If ItOl < t(l-./ 2 ,-p), conclude H0

If 1tol > t(i-,/ 2 ,n-p) conclude H.

Here, a represents the preselected probability of Type I error, which means a is the probability

that Ha will be concluded when HO is true. Also, n is the number of cases on which the regression

is based and p is the number of 3 parameters ii.cluded in the model.

Enroute to discussing further statistical tests of regression results, it is necessary to introduce

the concept of sumns of squares. The sums of squares concept involves the partitioning of the sum

of the squared deviations of the Ys from the average Y, Y. The sum of the squared deviations of

the I's from Y is referred to as the tetal sum of squares and ih expressed in Equation 3.

/n
SSTO =-( - ) (3)

w1

where ."/ /I" '
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SSTO = total sum of squares

"i = observation number

n = total number of observations

Yi = the response for observation i

= the average response

The total sum of squares can be viewed as a measure of total variation of the Ys from the

mean response (27:87). SSTO can be partitioned into two pieces, sum of squares for error and sum

of squares for regression. These are expressed in Equation 4 and Equation 5, respectively.

n

SSE =1](y, -•,)2 (4)
s=l

where

SSE = sum of squares for error

. . i = observation number

"n total number of observations

-Y1 = the response for observation i

"i = the estimated response

I ! ,

SSR = - (5)

where
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SSR = sum of squares for regression

i = observation number

n = total number of observations

It, = the estimated response for observation i

= the average response

The sum of squares for error represents a measure of variation of the observed data with

respect to the estimated model. The sum of squares for regression represents the variation of the

estimated response values with the mean response. Again, note that the total deviation of the

response from the average response (SSTO) can be partitioned into the deviation of the observed

response values from tile estimated response values (SSE) and the deviation of the estimated

response values from the mean (SSR). Equation 6 and Equation 7 summaiize the relationship

between SSTO, SSE and SSR (27:87-89).

SSTO = SSE + SSR (6)

Cn

D y. - k-) = - 1-) + D(• (7)

where
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t = observation number

n = total number of observations

"Yi = total deviation

1', Y = deviation of estimated response

around mean

Yj - 1 = deviation of observed response

around estimated response.

After computation of the sums of squares, mean squares can be computed. The mean squares

"for regression (MSR) and mean squares for error (Mf -') are computed by 'dividing the associated

sums of squares by their corresponding degrees of freedom (df). Degrees of freedom, in general

terms, refers to the number of opportunities in which variab..•s are iree to vary, given a seý of data.

"For instance, SSTO has n - 1 df, where n is the number of observations in the sample. One degree

of freedom is Inst because the deviations Y, - V7 must, by definition, sum to zero. This means

that n - 1 Y observations are free to vary, leaving the last observation no freedom to vary. It

can be equivalently stated that one degree of freedom is lost because Y was used to estimate the

true system mean (27:91). For SSE, there are n - p degrees of freedom, where p is the number

of parameters estimated. One degree of freedom is lost for each estimated parameter. SSR has

associated with it p - 1 df. There are p parameters in the model but one degree of freedom is lost

-because, by definition, the deviations ki - 'P must, sum to zero. Thus, p - 1 parameters are free

to vary but the last one is not. Equation 8 and Equation 9 show the computations for AISE and

MSR, respectively.

SSE
MSE = (8)

where
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MSE = mean square for error

SSE = sum of squares for error

n = the number of observations in the sample

p = the number of parameters iacluded in the model

vn - p = the degrees of freedom for associated sum of squares (SSE).

SSR
MSR - (9)

p-I

where

MSR = mean square for regression

SSR = sum of squares for regression

p = the number of parameters included in the model

p- 1 the degrees of freedom for associated sum of squares (SSR).

Having computed the mean squares, a common statistical test for overall regression relation

can be performed. This test makes use of the fact that. given the previous linear regression model

assumptions, the value M is distributed according to the F distribution. The null and alternative

hypotheses for the test are as follows.

Hto :/13, = 02 .... = 1,- = 0

H : not all the 0 L. (k = 1_. p- 1) = 0

Again, n is the number of cases included in the regression and 1, is the number of parameters

included in the model.

"22
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Table 1. General ANOVA Table for a Linear Regression Model

"Source of

Variation Ss df NIS Fo

Regression SSR = JY-Y
2  p-1 MSR = Ss FO MS

, .Error SSE y 1 )2  n- p MSE =

Total SSTO= ~1(y 1 -V) 2  n-

The test statistic FO is computed as FO " ASR where MfSR and MISE are the model mean

square for error and mean square for regression, respectively. The decision rule for selecting a

hypothesis is as follows.

IfFo •F(1.;p-..l-p), conclude H,

If FO > F(l..;patlop), Conclude H.

The F test for regression relation serves primarily to determine whether any of the predictor

variables, in their proposed format, are providing any statistically significant prediction of the

response variable.

After computation of the sums of sqthares, mean squares and the F statistic for overall re-

gression relation, linear regression results are frequently summarized with an analysis of variance

(ANOVA) table. An ANOVA table is presented in Table 1.

Recall that the above statistical tests require the assumption that thle error terms, C, are

independent random variables distributed N(O,o,2). The assumption of normality of the error terms

- .'is frequently tested through analysis of the residuals. Residual i-, another name for the deviation

1of anl observed response from its predicted value, Yi - 11. (Residuals are often denoted as e.)

Residuals are frequently analyzed to determine the aptness of the proposed regression model. The

error terms (c .. - E(Yr)) themselves cannot be analyzed because (he true mechanistic regression

. 23
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model (E(Y,)) is unknown and thus the error terms are unknown. To analyze the residuals, they

are frequently plotted against the estimated response ,alues and the predictor variables. These

plots indicate whether the variance of the residuals (and thus the variance of the error terms) is in

fact constant (cr 2) over varying levels of the other variables. Such constancy of variance is called

homoscedasticity. A plot of the residuals against the expected residuals given a normal distribution,

is also frequently plotted. This is called a normal probability plot and, as the name implies, will

indicate whether the residuals (and thus the error terms) appear normally distributed.

If, after residual analysis, it appears that the estimated regression model is not apt, often

either the predictor variables or the response (or both) can be mathematically transformed to make

it so. Neter, Wasserman and Kutner discuss several such transformations (27).

As mentioned previously in the discussion of general modeling, not all models are good models.

In linear regression, the goodness of model fit is frequently assessed through the statistic R"2 . R 2

is called the coefficient of multiple determination and is interpreted as the proportion of variance

in the response that is explained by the estimated model. The computation for R' is shown in

Equation 10. A high R 2 indicates the estimated empirical model fits the data well and thus may

provide reasonable prediction results.

R2. SSR SSE (10)

SSTO SSTO

The above tests and statistics illustrate only some of the more common descriptive and

inferential statistics applied to linear regression results. W\hil;- there are numerous other tests those

discussed above are employed throughout this thesis and thus required review at this time.

The previous discussion of linear nmatheniatical models and linear regression explained how

model parameters are estimated and how statistical inferences can be made concerning the regres-

sion results. The previous discussion assumed that. a suitable regression model was used. Con-

2.1
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structing a suitable linear regression model can be a very involved process. Neter, Wasserman and

- - Kutner describe the model-building process as involving the following four phases (27:433).

1. Data collection and preparation.

2. Reduction of the number of predictor variables.

* 3. Model refinement and selection.

4. Model validation.

These four phases are graphically depicted -in Figure 4 (27:434). Note the relationship between

Figure 4 and Figure 1 which represents the job performance model development process. Collaps-

ing the second and third phases of Figure 4 into one phase would make the two figures highly

comparable. This means that the process for developing a mathematical job performance model

is virtually the same as the process for developing any linear regression model. This process can

* '.~generally be extrapolated to any mathematical model development.

The first phase of the regression model building process, data collection and preparation,

involves the gathering of the data, preferably through some designed experiment which will yield

the type of data needed to answer the research questions. Following collection of the data, the data

must be prepared for analysis. Data preparation may involve screening out any predictor variables

which are not fundamental to the problem, which are subject to large measurement error, or which

duplicate other predictors (27:435). Data p~reparation also involves editing of the data to remove

any gross data errors, and identification of any extreme outlying observations-which can adversely

influence regression analyses. Useful tools for identifying data errors and outlying cases include

scatterplots, histograms and frequency distributions of the predictors ind response.

The second phase of the model building process invo!ves the reduction of the number of

predictor terms. Once the functional form of the regression relation has been decided upon (whether

the predictor or response variable's are to appear in linear form, quadratic form, logarithmic form,
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etc.), the next step is to select a good subset (or subsets) of the predictor terms (Zs) (27:43). Recall

.,- from the previous general discussion of modeling, a good model is one that not only adequately

represents the underlying system, but is also as simple as possible. This is the reason for reducing the

, . number of predictor terms, if possible. One common technique for reducing the number of predictor

terms is stepwise linear regression. Stepwise regression is an automatic search procedure that

sequentially develops the subset of predictor terms to include in the model. In very general terms,

stepwise regression sequentially adds the predictor terms to the regression model and computes

the statistical F tcst for overall regression relation. Predictor terms are added to or removed from

- . the model based on whether their associated computed F statistics, considering other variables

currently included in the model, exceed or fall below prespecified F statistic criteria (27:453-454).

Stepwise regression can be an efficient way of obtaining a single, parsimonious (simple) regression

model.

The third phase, model refine~r.t ...ad selection, involves study and improvement of the

' model(s) resulting after reducing the number of predictor terms. In this stage, the data are checked

in detail for overlooked evidence of curvature and interaction effects. The model assumptions are

checked through residual analysis, and diagnostics are performed to identify such things as severe

outlying observations (27:437-438). Also, remedial measures such as data transformations are made

if necessary. The result of this phase is the ideutification of a single model which most adequately

and parsimoniously represents the system under study.

"The last phase of the model building phase is model validation. Model validation involves the

assessment of the model in terms of its generalizeability to the overall system, and not just to the

data from which it was created. Model validation usually involves checking the model against new

data, theoretical expectations, earlier results or simulation results (27:465).

, Having provided a general overview of modeling with emphasis on mathematical models,

S .and namely linear models, focus will now turn to the Air Force's most recent. R&D concerning
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the measurement and subsequent modeling of airmen job performance. First, however, the next

section will provide the reasons that the Air Force is interested in job performance measurement

and modeling.

2.2 Air Force Interest in Job Performance Research.

2.2.1 Air Force Inierest in Measuring Job Performance. Aside from the need to

obtain job p-rformance measures for modeling, there are other reasons thaL virtually all large,

success-dept it organizations are interested in measuring the job performance of their personnel.

The first chapter mentioned some operational and congressionally-mandated requirements which

sparked the Air Force's interest in measuring job performance. Wayne Cascio provides the following

reasons that organizations in general are interested in having job performance measures(6:74).

1. Performance measures can serve as a basis for making personnel decisions such as who to fire,

who to reward, and who to promote.

2. Performance measures can be used as a criteria for assessing the impact of any number of

personality or situational variables on job performance.

3. Performance mea-sures an serve as predictors of future performance.

4. Performance measures car. help assess training programs and establish training objectives.

5. Performance measures can provide feedback to employees.

6. Performance measures can help in diagnosing and developing organizations.

The Air Force is interested in measuring job performance for these reasons as well. What Cascio

is saying is that job performance measures can give an organization the abili' to improve its

manpower and personnel systems and practices in numerous ways. Coupling Cascio's reasons with

operational requirements like those discussed in Chapter 1 provides the Air Force with several

compelling reasons to pursue job performance measurement research.
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2.2.2 Air Force Interest in Modeling Job Performance. Like measuring job performance,

most organizations are interested in modeling, for prediction purposes, the job performance of their

incumbent personnel and those individuals who have not yet joined the organization. The Air Force

can certainly be counted anmong the organizations interested in modeling performance. Much can

be gained by predicting the future performance of applicants. Such prediction could help in the

hiring, or enlistment, process. If the Air Force could assess ahead of time who is likely to be most

productive or successful, it could ensure that such individuals are enlisted, while avoiding those

who are least likely to be productive.

On a grander scale, the modeling of job performance could be useful in manpower planning.

Predicted job performance resulting from models, could be used as a basis for allocating personnel

to various jobs according to some desired goal. For instance, if the Air Force could predict job

performance, it could assign its personnel to ensure that maximum possible levels of productive

capacity, or readiness, are obtained. Simply put, the ability to predict job performance can help

an organization to make optimal ui e of its personnel resources.

2.3 Air Force Measurement of Job Prrformance.

Prior to reviewing relevant job performance literature, job performance models must be

couched in terms of the previous modeling discussion. Figure 5 illustrates a mathematical job

performance model using the same type of graphical representation shown previously. In model-

ing job performance, the system is in essence, a typical worker (in the current research, a typical

airman). The inputs are the many factors known to influence a worler's job performance. The

output, or response is the worker's actual job performance. The system (worker) is modeled as a

mathematical function. In the mathematical model of job performance, the inputs art, known levels

of selected predictors. The output, or estimated response, is an estimate of soner measture of job

performance.
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Figure 5. Graphical Representation of a Job Performance Model

It is important to note that to build a mathematical job performance model, or any math-

ematical model for that matter, sound measures of the response must be obtained. It should be

obvious that for a job performance model, job performance is the response and job performance

measures must be obtained. It will be shown that the development, and collection of valid and reli-

able job performance measures can be a very involved process. Prior to discussing the Air Force's

development of job performance measures, the next section provides an expanded definition of a

job performance measure, and definitions of other key terms in job performance measurement.

2.3.1 Definiiions.

2.3.1.1 Job Performance Measmire. A job performance measure is a criterion used

to assess the quality or amount of work completed.

The term job performancc ineasire generally refers to the formal, valid measurement criteria

used by individuals who have a professional interest in assessing and quantifying work performed on
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a particular job. Job performance measures are generally not associated with informal subjective

assessments or o~inions concerning work completed.

Although job performance measures can theoretically be used t~o evaluate work done by indi-

K *i''vidual workers, groups, or machines, they are usually applied to individual workers.

There are numerous possible schemes for classifying job performance measures. An important

scheme that will be considered in this thesis classifies measures as quality-based or quantity-based

job performance measures.

2.3.1.2 Quality-Based Measures. Quality-based job performance measures are

those measures which reflect how well work is accomplished. Quality-based measures include such

things as subjective ratings of the quality of work, or the percentage of steps performed correctly

while completing a task.

1"I/ 1 2.3.1.3 Quantity-Eased Measures. In contrast to quality-based measures, quantity-

A based measures of job performance are those that are concerned with how much work is accomn-
';4

plished, referenced to time. Some examples of quantity-based measures include the number of parts

made per hour, or just the time it takes to complete a job task. It is generally the case for quantity-

/ . based measures that more is better. In other words, shorter work completion times are desirable.

// Shorter work completion times equate to higher worker output rates. This is obviously desirable

for an organization provided the greater worker output is not at the expense of the worker.

The distinction between quality-based and quantity-based measures is important to th2 Air

% Force. This is because although the Air Force is interested in both quaantity and quality, quantity-

based measures seem to be more frequently used in most Air Force force manpower modeling and

planning. The reason is that. overall work output is usually the object, of interest in planning and

7 modeling exercises. For instance, the Air Force currently focuses on such readiness measures as

2". '.sortie generation rates and mean time to repa~ir aircraft. Only quantity-based job performance
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measures contain the work output information needed to assess such readiness measures. But the

Air Force realizes that quantity, without quality considerations, is not sufficient or desirable. Thus,

there usually is a simultaneous interest in quantity and quality. This is especially true of the Air

Force and most production-oriented organizations.

The Air Force's most recent, job performance measurement research, under the Productive

Capacity Project, has focused on quantity-based measures with an attempt to build into these

measures, at least a minimum acceptable quality consideration.

2.3.1.4 Quantity/Qualty Tradeoff. There is a commonly accepted notion of a

quantity/quality tradeoff when performing work. The notion is that, all things being equal, the

quality of work will decrease as the available time to put into the work decreases. Or similarly, the

amount of time to complete a piece of work will increase as the attention given to quality of the

work increases. It is believed that quantity and quality are directly related.

This tradeoff suggests that it is possible to allow too little time to complete a piece of work such

that the quality of the work would be too low, or unacceptable. Or similarly, inordinate attention

to work quality can increase the work completion time making it too long, or unacceptable. It

is desirable, then, to somehow account for quantity when collecting quality-based measures, and

quality when collecting quantity-based measures. This is to ensure a. least minimum acceptability.

As previously mentioned, the Air Force in its Productive Capacity Project has attempted

to build a minimum acceptable quality standard into its quantity-based measures. This is ac-

complished by phrasing the job performance measurement question as, "How long does it take

to complete a piece of work while ensurgng some acceptable level of quality?" (The actual data

collection format and instrument will be discussed in Section 2.3.2.5.) For quality-based mnasures,

quantity can likewise be accounted for by asking a measurement question like, "How well can the

work be completed in some acceptable (or fixed) amount of tine?"
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The built-in quality considerations are the Air Force's current method for addressing the

quantity/quality tradeoff when collecting its quantity-based measures.

2.3.1.5 Productive Capacity. Productive capacity (PC) is a quantity-based job

performance measure that represents the maximum amount of work output a given person is

capable of producing on a particular job or task (21).

Productive capacity is to be distinguished from productivity. Productivity generally refers to

how much output people typically yield on a normal, day to day basis. Productive capacity on the

other hand, represents the amount of work people are capable of producing if they work to their

full potential.

The di3tinction between prod-ictive capacity and productivity is important when attempting

to identify the factors affecting performance. It is quite possible, if not likely, that factors affecting

productive capacity'are not the same as those affecting productivity. Several recent studies have

supported this theory.

"The distinction between productivity and productive capacity was indirectly addressed in

a study conducted by Sackett, Zedeck and Fogli (1988) (34). They made a distinction between

typical and marimum performance. Typical performance generally refers to average or long term

performance, while maximum performance refers to the performance resulting when maximum

effort. is given. Sackett and others found low correlation between typical and maximum performance

of supermarket check-out clerks. Their findings suggest that a low correlation would likely exist

between productive capacity, arguably a measure of maximum performance, and productivity, more

a measure of typical performance. The expected low correlation implies that PC and productivity

are measuring different aspect s of job performance, and would likely be related to different. factors.

2.3.2 Background LitWrature on Job Performance Measurement in the Air Force. As

mentioned, several operational. practical and congressionally-mandated requirements initially gave
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the Air Force motivation to rather aggressively pursue job performance measurement research.

Recently, it has been the Air Force's desire to develop job performance models that has perpetuated

the motivation and research. As previously discussed, measures of job performance are required in

the development of mathematical job performance models. Following is review of the Air Force's

research efforts to develop sound measures of job performance for meeting requirements and for

development of job performance models. Two primary research projects are reviewed, the JPM

and Productive Capacity Projects.

2.3.2.1 The Joint Service Job Performance Measurement Project. In response to

the 1983 congressional mandate to link job performance and enlistment standards, and for numerous

operational reasons, the armed services began a joint research and development project in the early

1980's. The purpose of the project was to explore valid job performance appraisal techniques.

The research was coordinated across the armed services to insure a common direction of effort, to

avoid duplication of effort, and to facilitate technology transfer between the services. The research

project is known as the joint-service Job Performance Measurement/Enlistment Standards Project,

or simply the Job Performance Measurement (JPM) Project.

2.3.2.2 The Air Force's Job Performance Measurement System Project. As part of

the broader JPM Project, the Air Force began its similarly-named Job Performance Measurement

System (JPMS) Project (16). As the name implies, the JPMS Project's primary purpose was to

develop or identify a job performance measurement system that is valid, meaning it would consist

of measures that accurately reflect how well a job is performed. As expected, this proved to be a

challenging task.

The Air Force developed various job performance measures including hands-on performance

tests, interviews, written tests, and supervisor, peer. and self ratings (3) (15) (16) (23). The primary

performance measure developed under the JPMS Project was the Walk-Through Performance Test

(WTPT) consisting of a hands-on work sample test and an interview portion (15).
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The JPMS measures were eventually applied to airmen in eight Air Force Specialties (AFSs)"

between 1982 and 1987. The results of the 3PM project are thoroughly documented by Laue,

Teachout, and Harville (1992) and in numerous technical papers produced by the Technical Training

Research Division, Human Resources Directorate, Armstrong Laboratory (19).

As the 1980s ended, the JPM Project, at least for the Air Force, drew to a close. How-

ever, there were no plans to operationally implement the JPM measures because of the cost and

practicality problems addressed in the next section.

2.3.2.3 Problems With the Air Force's Job Performance Measurement System Mea-

"sures. Despite the success of the JPMS Project in developing sound methods for measuring job

performance, the JPMS measures have some problems which limit their broader use in manpower

modeling. For instance, consider the Walk-Through Performance Test of the I PMS Project. De-

"spite its attractiveness and validity as a work-sample test, it is very expensive and time consuming

to develop and administer. This is because of a high degree of job and task analysis required, and be-

cause of a frequent need to access subject matter experts (SMEs), usually senior non-commissioned

officers (NCOs). It also requires travel to Air Force bases for access to examinees. Further, it is

intrusive in that the test must he set up and administered in the actual workplace. Finally, it

requires several hours of the examinees' time, which means they must be absent from their daily

duties. These factors significantly lower the utility' of the measure for any kind of widespread use.

A second problem with the J PMS measures is that they are in a form that is not, very useful

for manpower planning (21:3). The measures are quality-based, generally in a form representing

percent, correct on a performance test, or a performance rating on an quality-anchored rating scale.

Such quality-based measures have obscure interpretations in manpower decisions which require

work output information (21:3).

i--.
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Another research effort conducted during the JPM time frame introduced another job per-

formance measure, called productive capacity, which seemed to be free of many of the troubles of

the JPM measures. A discussion of this initial PC research follows.

2.3.2.4 Initial Productive Capacity Research. Carpenter, Monaco, O'Mara and

Teachout (1989) conducted research for the Air Force during the same time period as the JPM

Project, to explore the feasibility and utility of a novel job performance measure called productive

capacity, or PC (5). As defined earlier, PC is a quantity-based job performance measure that

represents the maximum amount of work output a given person is capable of producing on a

particular job.

Carpenter and others mathematically defined productive capacity as t*/t, where t" is a stan-

dard, representing the fLstest possible time in which a given piece of work can be completed. Also,

Srepresents the time, on average, it takes the individual under assessment to complete the work.

The researchers investigated whether FC ratings could be effectively provided by Air Force

supervisors. Their research involved personnel in career field 328X0, Avionics Communications.

Prior to collecting data on experimental subjects, benchmark times were assigned to clusters

of tasks representative of the job, by subject matter experts. The benchmarks represented SME

estimates of the average amount of time it would take a first-term airmen to complete the task

cluster. The benchmarks were the;i provided to Air Force supervisors who used them to estimate

work completion times for their personnel.

The PC data collection went as follows. Supervisors selected one of their workers whom they

believed worked closest to the benchmark pace. They then estimated how long it would take each of

their other workers to complete the same amount of work that the benchmark worker could perform

in one hour. This was done for each task cluster. The I* values were ol.tained by subtracting one

minute from the fastest estimated time for each task cluster.
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To validate the supervisor estimate technique, the researchers collected more objective per-

formance data using WTPT methodology, for comparison. Correlations between supervisor ratings

d1 and the objective measures were low to moderate.

7. Overall, the research indicated the supervisor estimate methodology for obtaining productive

capacity data had promise. This is true especially when considering the cost and time-consuming

nature of empirically deriving V and t values by actually timing airmen while they perform job-

related tasks. Unfortunately, the study indicated that more development of the productive capacity

measure was needed.

This research had several associated problems. The first problem was the use of a benchmark

worker as a basis for comparison when supervisors made their time estimates. Because supervisors

* selected unique benchmark workers (from among their own suibordinates),.there was to some degree,

a floating reference point between supervisors when estimating performance times. This may have

introduced bias into the ratings.

. ... Second, th-. PC measures were computed from time estimates that were reflective of an

individual's performance on average. The PC measures derived from these times do not reflect true

productive capacity, but average productivity. This deviates from the definition of PC as previously

expressed.

A third problem was that only a single benchmark time was used by supervisors when selecting

- their benchmark worker, and indirectly when making their time estimates. The single benchmark

represented the average amount of time it takes a first term airman to complete work. The problem

wvith a single benchmark is that it says nothing about the variance and distribution of performance

times. This paints an incomplete picture of the range of performance times that might. be expected

across individuals. Supervisors probably used their own assessments of what the distribution of

performance times was like and further biased the ratings.
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A fourth problem was that the study looked at only one job. It is difficult to comment on

the utility of the PC measure for widespread use without looking at its performance in a number

of AFSs.

2.3.2.5 The Productive Capacity Project. As the JPMS Project and initial PC

research drew to a close, the Air Force recognized that many operational and modc'ing needs for

valid job performance measures would remain unsatisfied. The JPMS measures wcre useful in

fulfilling the congressional mandate, and the initial PC research demonstrated the potential of a

new measurement technique. But neither effort provided a valid and efficient measure suitable for

broader use in addressing operational concerns and in development of job performance 11 odels. The

Air Force realized it must conduct further research to develop a measure that could b-eter satisfy:

its needs.

The Air Force reviewed its performance measurement research and determined tha- it would

pursue the development of the PC measure over any of the 3 PMS measures. This is becý use PC

offers the most overall promise. The PC measure seems to counter the problems associate( with

the JPMS measures in that it is relatively inexpensive to implement, it is quantity-based, and thus

can be meaningful when making manpower decisions. Also, the PC measure as origipally defined

seemed to leave room for significant improvement.

As a result, the Air Force began its Productive Capacity Project, with the goal of improving

the PC measure so that it could be used to address operational concerns and to serve as basis in

manpower modeling.

The first effort of the Productive Capacity Project was an attempt to address the problems

associated with the initial PC' measure (21). Instead of having supervisors use a benchmark worker

as a reference when estimating performance times, the researchers had them use time-anchored

rating scales derived from •ubject matter experts as the reference. Next, supervisors were not

asked to estimate individuals' typical or average performance times. bit their fastest possible
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performance times. And, as an alternative to providing supervisors with only a single benchmark

reference time, the time-anchored rating scales used had multiple benchmarks per individual task.

The benchmarks represented estimates of the fastest time in which the task could possibly be

completed, the average time it would take a first term airman to complete Lhe task, and the longest

time that an airman would be allowed to work on the task without negative consequences to the

job. Last, the researchers studied four Air Force jobs to provide a broader view of the PC measure's

effectiveness.

The reader is referred to Measurement of Productive Capacity: A Methodology for Air Force

Specialties, for a complete description of this PC research (21). Because the PC data collected by

Leighton and others for AFS 454X1 will be used for the analyses in this thesis, following is a fairly

detaied overview of the research.

An early issue for the Leighton and others 'was the selection of jobs to be studied. The first

job selection consideration was the aptitude category into which jobs are classified. The Air Force

uses a 10-subtest paper-and-pencil test called the Armed Services Vocational Battery (A7VAB) to

select recruits for service, and then to place them into jobs. Air Force jobs can be classified into

four categories corresponding to four ASVAB composite scores The job type- and corresponding

composite scores are Mechanical (M), Administrative (A), General (G), and Electronic (E). The

composites are referred to as aptitude indices (Als), and theoretically measure aptitude in their

named area. Each Air Force job is associated with at least one Al, by the nature of the work

performed in the job. There are minimum Al cutoff scores that individuals must exceed to enter

the various job types (8).

To assess the utility and validity of the PC measure across a variety of jobs, the researche~rs

opted to select one job from each aptitude area for the study. They also chose to select from among

the eighý jobs analyzed under the JIPMS Project. This was to take advantage of the extensive task

A analysis information previously compiled. Also, the four jobs studied latest in the JPMS Project.
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Table 2. Air Force Specialties Selected for the Initial Study of the Productive Capacity Project

Specialty Code Specialty Name ASVAB Aptitude Index
122X0 Aircrew Life Support General (G)
454X1 Aerospace Ground Equipment Mechanical (M)
455X2 Avionic Communications and Navigation Systems Electronic (E)
732X0 Personnel Administrative (A)

Table 3. Number of Tasks Selected for the Initial Study of the Productive Capacity Project

Specialty Code Number of Tasks
122X0 45
454X1 50
455X2 41
732X0 36

were given preference because written job knowledge tests were created for them (3). These JKTs

were identified as potentially useful measures for PC validation.

A last consideration in job selection was the availability of airmen to serve as experimental

subjects. After consideration of all factors, the four jobs listed in Table 2 were selected.

(Under the JPMS Project, 455X2 appeared as 328X0, Avionic Communications. The 455X2 title

reflects the combination of AFSs 328X0, 328X1, and 328X4. Similarly, 454X1 appeared as 423X5.)

After selecting the jobs, the analysts were faced with the issue of selecting which tasks from

within the jobs would be studied. As with the JPMS Project's Walk-Through Performance Test,

the task level was chosen as the appropriate level of job detail for collecting the PC data.

Tasks from the WTPT were highly desirable candidates for the PC research because they

were very well articulated and broken down into great detail as part of the WTPT development.

Unfortunately, there were not enough WTPT tasks generalizable to all positions within a given

AFS to provide an overall view of an individual's PC. The researchers subsequently selected addi-

tional tasks from task inventory data collected by the Occupational Measurement Squadron (OMS),

Randolph AFB, TX. The final numbers of tasks are listed in Table 3.
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S:i /.,Table 4. 454X1 Job Duty Areas

iI : "Duty
.t'Area Description

I ,A Organizing and Planning
:' , ,:'B Directing and Implementing

SC Inspecting and Evaluating
: " !]D Training

E Performing General Administrative Tasks
S-'F Performing Preoperations or Service Inspections

• ' /G Performing Periodic Inspections
S• ;H Maintaining AGE Electrical or Electronic Systems

SI Maintaining AGE Engines, Motors, or Generators
, - ;J Maintaining AGE Heating Systems

SiK Maintaining AGE Refrigeration Systems
" '. i" ior Equipment Coolers

: ., "L iMaintaining AGE Test Stand, Bomblift, or General
:,, :.• ,Servicing lHydraulic Systems

, ,M Maintaining AGE Pneumatic Systems
.. iN Maintaining AGE Enclosures, Chassis, or Drives

• - .0 Maintaining Mobile Tactical Air Control Systems
- Equipment

• "" /P Dispatchilng AGE
Sl'"'.Q Maintaining Special Tools or Shop Equipment
S/• ,R Performitng Quality Assurance Tasks

• •S Performing Nonpowered AGE Maintenance
" ',• "T Performing Cross-Utilization Tasks

• : Job tasks are typically coded by OMS (40). Task codes consist of a letter prefix and a

S;,': i:'numeric suffix. The letter prefix identifies which job duty area tthe task is from, and tihe numeric

-• "•Jsuffix differentiates tasks within the [luty areas. Because data for AFS 454X1 were analyzed in this

.\. thesis, Table 4 which lists the 454X1 job duty areas and Table 22 at Appendix A which lists and

!: , • --../describes the 50 454X1 tasks analyzed were included (40).

S~The task descriptions in Table 22 at Appendix A do not exactly match the descriptions

. i! maintained by OMS. The task descriptions had to be modified for the Productive Capacity Project

• i..:.., ,to clearly define a task by specifying exact equipment, and precise starting and stopping points so

S' ; that accurate completion time estimates could be made.

• 2 After t~ask selection, the researchers had to establish benchmark times for the tasks. The



estimating the work completion times of their subordinates. Three benchmarks were derived for

each task. These represented the tastest time in which the task could be completed, the average

time it takes a first term airman to complete the task, and the longest time that an airman would

be allowed to work on the task without significant consequences to the job.

To get these benchmarks, six SMEs from each job were assembled for workshops at Brooks

AFB, TX. The workshops for each job were held separately. During the workshops, the SMEs were

presented the task l'sts corresponding to their given jobs. The Nominal Group Technique (NGT)

was used to reach consensus among the SMEs for each benchmark for each task (14).

A detailed analysis of the interrater agreement of the SMEs when providing the benchmarks

was accomplished by Skinner, Faneuff, and Demetriades (1991) (39). Overall, they found that there

tends to be very strong agreement among SMEs when estimating the benchmarks.

To gain access to supervisors and airmen to serve as experimental subjects, it was necessary

for the researchers to visit a number of Air Force bases. The primary considerations in selecting

the Air Force bases included the following:

* The number of potential subjects available at each base

* Base location (Continental U.S or overseas)

* Base mission (training, classified, etc.)

The researchers determined that 10 bases would be visited. The bases are listed in Table 5.

A sample size of 200 airmen per AFS was targeted. This was the maximum number that

could be tested given project. resources. Also, a sample size of 200 was considered sufficient to

support planned analyses. Subjects for each AFS were selected to be representative of the base

populations in terms of three factors:

9 Job experience
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Table 5. Bases Visited in the Initial Study of the Productive Capacity Project

Air Force Bise
Travis AFB, CA
Beale AFB, CA
George AFB, CA
Davis-Monthan AFB, AZ
Hollonian AFB, NM
Langley AF3, VA
Shaw AFB, SC
Offutt AFB, NE
Eglin AFb, Fl,
Charleston AFB, SC

* Race

* Gender

Job experience was considered a very important factor because of its hypothesized statistical

relationship with PC. Because of the hypothesized relationship, an attempt was made to get subjects

across a range of experience. This would allow the hypothesis to be appropriately tested.

Experience was expressed in terms of skill level. Skill level is a variable used by the Air

Force. It ranges from 0 to 9, and it represents the amount of training, expertise, and experience

an airman has on a given job. Skill levels 3 and 5 were sought because they indicate that an

airman is performing mostly hands-on production work, as opposed to receiving technical training

or performing supervisory duties. Race and gender factors were considered important to allow for

future investigation of differential effects of the PC measure across race and gender groups.

The researchers reviewed distributions of personnel at, the participating bases and developed

target numbers of subjects. The actual individual test subjects were selected by the participating

bases, using guidance from the researchers. The bases had to select the subjects because they had

the most current information on manning requirements, deployments, and personnel status. One

problem with having the bases select the subjects, was that no consideration could be given to

subject aptitude level. This is becauwe ASVAB scores were not available in base-levo' personnel
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Table 6. Sample Sizes for the Initial Study of the Productive Capacity Project

Specialty Code Number of Subjects
122X0 159
454X1 204
455X2 155
732X0 193

records. Like experience, aptitude is expected to be related to PC and it would have been desirable

to sample subjects from a range of aptitude levels. The final sample sizes are listed in Table 6.

The primary focus of Leighton and others' research was to collect appropriate data to allow

them to assess how well supervisors can estimate the task completion times of their subordinates.

This means that the primary measurement instrument of the study was the time estimation

forms and accompanying booklets used by the supervisors to estimate how long it would take their

subordinates to complete the tasks being studied (24). The rating forms and booklets provided

the supervisors with detailed task descriptions, and a time line showing the fast, normal, and slow

times for task completion.

It was on the estimation forms that the supervisors provided the task completion time es-

timates, as well as an indicatioi. of how frequently they have seen the ratee complete the task

(Regularly, Often, Never). In making their time estimates, supervisors were told to "think about

how long it would take each airman to do the task if he or she were working as quickly as they

could, while maintaining satisfactory performance" (21:52).

In addition to using the forms to estimate task performance times, the supervisors used them

to provide an overall or global estimate of their subordinates' productive capacity. The supervisors

were asked to answer the following question: "In this specialty, consider the rnaximnumn amount of

acceptable work that can be done by a person in a typical day as 100 percent.. What percent of the

maximum could the person you are currently rating do in a typical day?" (21:52) This measure was
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of secondary interest, and was collected for use as an object of comparison for the time estimates.

FFi:ure 6 provides an example of the time estimation form for 454XI.

Besides the PC rating forms, many other instruments were used during the study. These

instruments are to be used to validate the PC estimation methodology, and to investigate for

/ . relationships between scores from these instruments and PC. Other data forms were used to collect

background information on the experimental subjects and their rating supervisors.

The main instrument for validating the PC estimation methodology is a hands-on test similar

to the hands-on portion of the WTPT developed under the Air Force's JPMS Project. For the

test, a relatively small subset of tasks was chosen from each job (between 8 and 11). A subsample

of the experimental subjects were then chosen to actually perform the tasks (60 airmen from each

AFS). As the subjects performed the tasks, the researchers used a stopwatch to determine their

performance times. This was determined to be the best possible way to validate the supervisor

estimates. Also, JKTs were administered to subjects in three of the four jobs studied (none was

available for 455X2). JKTs are written tasked-based, multiple-choice tests designed to measure

how well an airman knows the procedures required to perform job tasks (3). The JKTs are to

serve as a basis of comparison in which to evaluate the PC measure. In previous studies, corrected

correlations between the hands-on portion of the WTPT and JKTs were found to be between .50

to .80 indicating a moderate to high level of linear relationship (19:11). Since the estimated PC

measure in the current study and the JKT are both purported to measure job performance, it was

expected that these measures would be correlated to some degree as wtll. High correlation was

not expected because the instruments likely measure different dimensions f performance since the

JKT deals with how well an individual knows the job, and PC deals wi h how long it takes an

individual to do work on the job.

Other measures that were administered include a 160-item interest inventory, the VOcational

Interest For Career Enhancement (VOICE), which was administered to subjects to determine their
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AFS 454X 1

AEROSPACE GROUND EQUIPMENT (AGE) SPECIALIST

Name

Airman's Name Airman's SSN

R-Regularly Hr-Hours

O-Occassionally Min-Minutes

N-Never Sec-Seconds

How Often You Consensus What is Incumbent's
Observe Incumbent Performance Time Scale Performance

Perform Task Time?

(Check One Box) Fastest - Normal - Slowest 3 (Fill in Box Below)

EI1OR -m 13min - 21 inu

F154 I I min- 17min - 24rminm R R

In this specialty, consider the maximum amount of acceptable work that can be

done by a person in a typical day as 100 percent. What percent of maximum

could the person you are currently rating do in a typical day? Write your

estimate in the box below.

Percent of
Maximum

I1% it107c

Figure 6. Example of the 454XI Rating Form
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level of interest in their current job (9) (12). A 30-item motivation measure, the Generalized Moti-

vation Scale (GMS), was also administered to the subjects (32) (33). The GMS was administered

to allow for investigation of any relation between overall motivation and PC.

Numerous other data collection forms were used to gather background information on both

"subjects and supervisors.

The project sponsor, AL/IIPMj has assembled a rich data base made up of individual sub-

ject records containing the project measures described above. Adding to its value, data from other//

important Air Force files have been added to ensure a complete background on the experimen-

tal subjects. Data added from the Uniform Airmen Record (UAR), a periodically-updated file

maintained by the Air-Force Military Personnel Center (AFMPC), included education level, race,

ethnicity, and the date in which the subject began active service. Data from Military Entrance

Processing Station (MEPS) files included aptitude scores and other background information for

cross-checking purposes.

2.4 The Predictors of Job Performance.

In the previous section, significant discussion concerning the job performance model response,

job performance, was provided. Next, discussion focuses on the predictor variables. Recall that the

predictor variables to be used in this thesis are aptitude and experience.

Numerous factors are thought to influence the job performance of individuals. These include

personality traits, job satisfaction, job interest, aptitude, and experience, to name just a fewv.

Psychological research is filled with studies showing the effects of such factors on performance.

It is important to note that the job performance measure under study in this thesis is produc-

tive capacity, which is distinguished from productivity. Many individual attributes that influiece

productivity like job interest, motivation, and other personality factors were not expected to influ-

ence productive capacity because PC is a measure of a person's capocity to produce not their actual
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Table 7. ASVAB Subtests

Subtest Name No. of Items Testing Time (Min.)
General Science (GS) 25 11
Arithmetic Reasoning (AR) 30 36
Word Knowledge (WK') 35 11
Parag'aph Comprehension (PC) 15 13
Numerical Operations (NO) 50 3
Coding Speed (CS) 84 7
Auto-Shop Information (AS) 25 11
Mathematics Knowledge (MIK) 25 24
Mechanical Comprehension (MC) 25 19
Electronics Information (El) 20 9

production. PC is theoretically independent of how a person views the work or feels about the job.

PC however was not believed to be independent of such things as a person's mental aptitude or

job experience since these likely influence a person's capacity to produce. Because of the hypothe-

sized relationships between aptitude, experience and productive capacity, the Air Force's emphasis

has been on aptitude and experience as predictors of PC (5) (13). This thesis continued with the

analysis of aptitude and experience as predictors.

In Air Force studies, aptitude is usually expressed in terms of scores on the ASVAB. As

previously mentioned, the ASVAB is a 10-subtest, paper-and-pencil test given to all armed service

and Coast Guard applicants (10). The test is designed to measure aptitude in various areas. The

applicants' ASVAB scores determine whether or not they are selected for service, and if so, what

type of job they are classified into (10).

The Air Force uses five ASVA.B composite scores to select and classify applicants and recruits.

Table 7 and Table 8 show the ASVAB subtests and composites, respectively, used by the Air Force.

The ASVAB is validated against a number of criteria by each of the services. The Air Force

typically uses the final grades Air Force recruits receive in technical training schools as validation

criteria. For instance, lice and Earles (1992) accomplished an ASVAB validation study in which

they analyzed data from 88,7241 Air Force recruits completing 150 training courses (31). For 22 jobs
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Table 8. ASVAB Composites Used by the Air Force

Composite Name Definition
Armed Forces Qualification Test (AFQT) 2VE + AR + M K
Verbal (VE) WK + PC

Mechanical (M) MC + GS + 2AS
Administrative (A) NO + CS + VE
General (G) VE + AR
Electronic (E) AR + MK + El + GS
MAGE M+A+G-lE
The composites are computed using subtest standard scores.

which use the M composite for selection, the corrected-for-range-restriction correlation coefficients

between the M composite and final school grades ranged between .63 and .78. For 11 jobs which

use tlhe A composite, the ccrrelation coefficients between A and final school grades ranged from .58

to .74. For 52 jobs using G, correlation coefficients ranged from .04 to .85. And for 44 jobs using E,

the correlation coefficients ranged from .56 to .90 (31:11-13). These moderate to high correlation

coefficients tend to indicate the ASVAB is valid, at least for predicting training school success.

This has long been the Air Force's method of choice for validating the ASVAB, but it is recog-

nized that validating the ASVAB against training grades does not necessarily equate to validating

the ASVAB against. j( b performance. But, studies by Carpenter and others, Faneuff and others,

and AL/HRM indicate that ASVAB scores can potentially be a significant predictor of PC, a job

performance measure (5) (7) (13) (38).

Experience measures in Air Force job performance R&-D are usually expressed in terms of

total months of active federal military service (TAFMS). This is generally used as a surrogate for

job experience because job experience indicators are not readily obtainable from existing computer

files. The reason job experience is considered important as a predictor can be traceable to learning

curve theory. Learning curve theory basically states that the time it takes to complete a unit of

work will decrease as the operator becomes more experienced (41). This suggests that PC will

likewise be affected by job experience because PC is computed from performance time data. As a

result, experience is an important predictor in PC prediction models.
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2.5 The Relationship Between Job Performance, Aptitude, and Experience.

The previous sections discussed the response, job performance, and the predictors, aptitude

and experience. This section discusses how job performance has been shown to relate to the

predictors in previous modeling efforts.

To analyze the effects of aptitude and experience on job performance Schmidt, Hunter, and

Outerbridge (1986) performed a study based on a sample of 1,474 civilian and military personnel

(35). They used path analysis to analyze the impact of job experience and mental ability on

job performance. The measures of job performance used were written job knowledge tests, work

sample tests, and supervisory ratings ofjob performance. Their findings suggest that job experience

affects job performance in two ways. First, greater job experience indirectly effects performance

because it leads to greater acquisition of job knowledge. The greater job knowledge leads to greater

performance. Second, job experience directly affects the ability of people to perform work-related

activities as indicated by work sample tests. Mental ability was found to have the same pattern

and magnitude of relationships on job knowledge and work sample perfurmance as experience.

Schmidt, Hunter, Outerbridge and Goff (1988) conducted a study based on the same sample

as the previously cited study, to analyze the joint relation of experience and mental ability with job

performance (36). They tested three hypotheses. The first, the divergence hypothesis, "predicts

that as job experience increases, the performance difference between high- and low-ability employees

will increase." (36:46) 'he second, the convergence hypothesis, "proposes that as employees gain

jot) experience, initial ability becomes less important as a determinant of job performarce." (36:46)

Last, the noytinletrau iive hypothesis states "experience increases job performance of high- and low-

ability employees at the same rate." (36:47) In other words, the third hypothesis states ,hat there is

no interact ion between exp,'-ý,nce and ability. Their findings support the noninteractive hypothesis.

and that mental ability and experience are important determinants ol job performance.
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In a similar study, Alley and Teachout (1990) used the WTPT data collected during the JPMS

Project (1). Like Schmidt, Hunter, Outerbridge and Goff, their findings support the noninteractive

hypothesis and the fact that mental ability and experience are important determinants of job

performance.

2.6 Air Force Job Performance Modeling Research.

The preceding sections provided an overview of linear models and discussions of the response,

/ iPC, and the predictors, aptitude and experience. The stage has thus been set for discussion of

specific Air Force studies in which the response variable was PC or raw performance times, and

the predictors were aptitude and experience.

To model PC, Carpenter and others used the logistic growth model in Equation 11 to model

PC (5:21).

C 1++ (11)

where

PC = productive capacity

1 experience (months in Air Force)

X2 = ASVAB aptitude score (Electronic Composite)

l~o,'i3,L3. = parameters to be estimated

e = the model error terms.

Note that the logistic model in its original form was not a linear mathematical model because

it was not linear with respect to the 8 parameters. However, the logistic model was linearized for

application of linear regression.



Carpenter and others linearized the logistic model by making the transformations indicated

in Equation 12 (5:21-23). Linearizing the model equation as such allowed for estimation of the

model parameters using least squares estimation.

PCin1-"c =fe+11 +f2 + (12)

where

ln( P_--C) = the logit of productive capacity

X = experience (months in AFS)

X2 = ASVAB aptitude score (Electronic Composite)

f/o, #l1, 2 = parameters to be estimated

= the model error terms.

Using Equation 12, Carpenter and others modeled PC at the task cluster level, and also at

the aggregate or overall level. The aggregate measure predicted was computed from a weighted

average of task cluster performance times. They analyzed a total of 10 task clusters. Across the

10 task clusters, the estimated experience coefficient was significantly different from zero at the

a = .05 level in seven cases, and the estimated aptitude coefficient was significant in four cases

(5:22). Model R-s ranged from .00 to .39 across the clusters. And, the models showed significant

regression relations in eight cases. For the aggregate model, both the estimated experience and

aptitude coefficients were s'gnificant at the o = .05 level. The aggregate model RI2 was .44 and the

model regression relation w s significant at the o = .05. Overall, the results suggest the supervisor

estimate method for generat ng individual performance times has potntial. But, as Carpenter and

others point out, further refi iement is needed (5:51)

While Carpenter and others ised tlie logistic model for predicting PC. Faneuff and others

found that a linear model provided better model fit than did the logistic model (13:9). Faneuff and
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others estimated PC at the overall or aggregate level using the model expressed in Equation 13

/ (13:9-10). Faneuff and others computed PC as WTPT score/maximum observed WTPT score,

using data collected under the Air Force's JPMS Project.

PC 0o + f3iXI + •2X2  + 03X3 + (13)

where

PC = productive capacity

X= ASVAB aptitude score

X= experience (months in Air Force)

X= a binary variable representing skill level

(coded I if skill is 5 or higher, 0 otherwise)

f3o,01, 32,,33 = parameters to be estimated

c= the model error terms.

The model was estimated for six of eight jobs studied under the JPMS Project. OWe job,

"Aerospace Ground Equipment (the job studied in this thesis), was analyzed using two ASVAB

aptitude composites, Electronic and Mechanical, yielding a total of seven possible prediction mod-

els. The regression results showed a significant aptitude coefficient in four of seven total cases, a

significant experience coefficient in four cases, and a significant skill level coefficient in three cases

(all coefficients were tested at the a = .05 level). Model R~s ranged from .10 to .23 (13:9-10).

AL/lIRM modeled estimated performance time data (as opposed to PC data) at the task

level, using the learning curve model expressed in Equation 14 (7) (38). The data used was that

collected by Leighton and others for the Aerospace Ground Equipment specialty (the same data

used in this thesis) (21).
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in(t) =3o +uiln(xl) + 132z 2 + 3 3XI X1 -+ C (14)

where

t = estimated task performance time

S1 = experience (months on the job)

X2 = ASVAB aptitude score (Alechanical composite score)

0,11,]32,/3 = parameters to be estimated

C = the model error terms.

A general form of the learning curve is expressed in Equation 15 (2) (18). Like the logistic

model used by Carpenter and others, the learning curve model in its original form is not a linear

model. But, like the logistic model, the learning curve model can be linearized so that its parameters

can be estimated via least squares. The linearized learning curve model is expressed in Equation 16.

Note that AL/HRM's linearized model (Equation 14) is analogous to :he general form of the

linearized learning curve model (Equation 16). A typical learning curve is plotted in Figure 7.

+ =Axo' +e (15)

where

I = task performance time

X = units of experience

A, 31  = parameters to be estimated

C = the model error terms.

Equation 15 can be written in linear form as Equation 16.
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_ •-•Figure 7. Plot of a Typical Learning Curve

I.

In(t) 8o +- 3 11n(z) + (16)

-/ where

t = task performance time

X = units of.erperience

g3o = In(A), a parameter to be es.tinatcd

S3, = a parameter to be estimated

e = the model error terms.

Using the linearized learning curve model expressed in Equation 1.H. AL/HRM found signifi-

cant coefficients for hn'job erperience) for 26 of the 50 tasks, significant aptitude coefficients for 18

tasks, and significant aptitude x experience interaction coefficients for 14 tasks (all coefficients were

tested at the a = .05 level) (38). Model R2s ranged from .01 to .20. The models showed significant
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Figure 8. Plot of Learni.-. Curves Broken Out by Aptitude

regression relations at the a = .05 level for 41 of the 50 tasks. The inclusion of the aptitude and

interaction terms in their model allowed AL/HRM to create learning curves broken out by aptitude

group. An example of learning curves broken out by aptitude groups can be found in Figure 8.

One significant problem with tile learning curve model is that there is no apparent. way to

model job performance at the overall job level. To model overall job perforinace 'qing the learning

curve model would likely require aggregation of task-level performance times. Such an aggregated

measure would have a dubious interpretation.

2.7 Relating the Literature to the Research Objectives.

The previous sections of this chapte" outlined modeling in general, and a great deal of lit-

erature on the Air Force's job performance modeling R&k'D. This section serves to provide a brief

overview of the literature with specific reference to the research ohjectives outlined in Ch,,pter 1.
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2. 7.1 Formulating a troductive Capacity Measure from Estimated Task Performance Times.

As previously mentioned in Chapter 1, ant important rtsearch objective of this thesis was to

identify an appropriate way of formulating a PC measure from the estimated task performance

times collected under the Productive Capacity Project (21). This PC formulation was to transform

the estimated performance times into a standardized measure that has meaning across tasks and

across jobs. Recall that such standardizatiorn was also required for aggregating data across tasks.

There are probably numerous ways that the estimated task performance times can be transformed

into a meaningful PC measure. In the literature, three ways to formulate a PC measure were

proposed. These are described below.

2.7.1.1 The Formulation of Productive Capacity During the Initial Productive Capacity

Research. In one of the first PC research efforts, Carpenter and others did a study of Avionics

Communications Specialists and proposed the original PC formulation. They computed PC as t'/t,

where t is the fastest possible time in which a given amount. of work can be completed, and t is

the time that it takes the individual being assessed to completrc the work (5:21). In this original

work, the t" and t measures were applied to clusters of tasks.

This formulation has the desirable quality of ranging from zero to one, which re-ults in an

intuitively appealing interpretation, The measure can be interpreted as an individual's output as

a proportion of maximum possible output.

Although the data collected under the Productive Capacity Project, is collected at the task

level as opposed to the task cluster level, the measure could just as easily be formulated at the task

level, as in the came of the current research.

Faneuff and others used an adaption of the PC formulation of Carpenter and others in an

effort to extend Carpenter and others% work to a greater number of jobs (13). The formulation

u"ed by Faneuff and others was- in fart t/t*, an apparent inversion of the t*/t formulation. 1ut,

the t and I' did not tepres.,nt perforumance itnes but WTPT scores collected under the Air F'orc',,
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JPMS Project. The variable I was an individual's WTPT score while t" was the highest obtained

score for the sample. Since the t" and t values represented scores in which higher is better (the

opposite of performance time), Faaneuff and others' formulation is essentially equivalent in terms of

interpretation, as the Carpenter and others t*/t formulation.

2.7.1.2 The Formulation of Productive Capacity Under the Productive Capacity Project.

AL/IIRM proposed the PC formulation t/t" (7). This is a simple inversion of the ratio proposed by

Carpenter and others. This reformulation was made because of ALi/HRM's concern that the origi-

nal formulation of Carpenter and others does not result in a linear transformation of the estimated

performance time data. This was perceived as a nuisance factor for the type of analyses AL/HRM

was considering. A nonlinear transformation has the ability to adversely influence measures of

linear relationship between two variables, such as the Pearson correlation coefficient.

The AL/IlRM formulation does not. have the desirable property of ranging from zero to one.

"Although PC scores under this formulation can range from one to co, the scores still maintain

a degree of interpretability. A PC score of one means an individual is theoretically operating at

maximum possible PC'. Scores above one represent multiples of the fastest possible performance

times. For instance, a PC score of two would imply that it takes the individual receiving this score

takes twice as long as the fastest possible performance time, to complete the work.

2.7.1.:. The Formulation of Productive Capacity in Time Studies. Although

time studies were not previously reviewed during the discussion of Air For,'," i performance

:neasure-ment efforts, their methodology provides a possible PC formulation so they must now

be reviewed. A time study is generally an Industrial Engimeering technique used to derive time

standards for coml)leting certain job tasks aind production-type jobs.

A first. step in a time study' is to clearly specify the operation to be studied. After tile

operation is clearly specifid, a generally average worker, or operator, is selected t.o serve as file
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subject of the study. The operator is then timed with a stopwatch by a qualified observer, for a

specified number of cycles of the work. After the performance times are collected, the observer

then assigns a performance rating reflective of the production rate of the operator.

The performance rating is used in "equitably determining the time required to perform a

taskby the normal operator after the observed values under study have been recorded" (29:325).

In other words, the performance rating is used to adjust the time of the actual operator so that

it reflects the time to be expected for a truly normal operator. If the selected operator worked

faster than normal, as perceived by the observer, the observed time would be adjusted downward

to reflect the normal time. Likewise, if the operator performed slower than normal, the observed

time would be adjusted upward.

A common method of performance rating assumes that the normal operator is associated with

a rating of 100, and performance greater than normal is indicated by values directly proportional to

100 (29:345). Thus, a rating of 120 would indicate that the operator's performance is 20% greater

than normal, while a rating of 80 would indicate performance 20% below normal (29:345).

This time study performance rating can be interpreted as a PC measure for a given operator.

The underlying formulation of the measure could be stated as (tnormal/f) x 100, where tfn....m is

the time it. would take a normal operator to do the task under study, and t is the time it takes the

actual operator to complete the task.

This PC formulation offered a third option for standardizing the estimated performance time

data collected under the Productive Capacity Project. provided the reasonable substitution of

t,,,, for t  iorsa is Inide. The quantity t ar,, the average time to complete the task, is virtually

synonymous with 1,10r"Idt and could be computed given the available Productive Capacity Project

data.

2.7.2 Schclihig a Task W1cighting Scheme. Applying task weightings would give the

tasks different levels of influence on the computed overall PC measure. This weighting is essential
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if one is to allow more important tasks to have greater impact on overall PC. The question is which

tasks are moye important?

Tasks are known to differ on many dimensions such as criticality, time to complete them,

learning difficulty, percent of the incumbents performing them, and percent of time incumbents

spend on the tasks (40). Any of such factors coLld ser-e as a weighting factor, depending on the

nature of the overall PC measure being computed.

In developing the WTPT, task clusters were weighted by the product of the mean recom-

mended training emphasis rating and the cumulative percent time spent performing tasks in a

cluster (23:6). The weights were used in determining how many tasks from each cluster to include

in the WTPT. This weighting factor assigned weights (importance) to tasks based on how impor-

tant the tasks were perceived in the training community and how much time airmen spend doing

them. This appeared to be a reasonable weighting factor for selecting tasks for the WTPT, but

dil not appear so for computing overall PC measures. Since PC is a quantity-based measure of a

worker's capacity to produce, it did not seem appropriate to let the training emphasis play a part

in the weighting scheme since this did not seem to be an influencing factor on how much an airman

can produce.

Carpenter and others, in the initial 1'C research, used a weighting scher'e to weight the

estimated performance times of individu,.l's on the 10 task clusters when computing overall PC

(5). But, it is not stated what the weighting scheme was.

2.7.3 Aggregating the Task-Level Data into an Overall Productive Capacity Measure.

As just mentioned, in the initial PC research, Carpenter and others used a weighted average of

the estimated performance times for the task clusters to compute an overall observed PC measure

(5:23). But there was no mention of what the weighting scheme was. Unfortunately, this was the

only research documented by the Air Force where job performance data were collected at the task

or task cluster level and so required aggregation. The literature thus indicates that the only way
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task-level data has been aggregated into overall PC measures was through weighted averaging of

the task-level data.

2.7.4 Developing Prediction Models. There were three primary studies which involved

the modeling of PC or performance time as the response, and the use of aptitude and experience

as predictors. These were the studies by Carpenter and others, Faneuff and others and AL/HRM

(5) (13) (38). The results of the studies were varied. Carpenter and others reported the highest

R's of any of the studies using a two-predictor, first-order logistic model (5). Faneuff and others

found that a first-order linear model fit their PC data better than a logistic model (13). Finally,

AL/HRM found relatively good fit to untransformed time data using learning curve models (38).

2.8 Research Direction.

'The reviewed literature provided some definite direction for the current research. First, The

literature suggested four possibilities for meeting the first research objective, formulating a PC

measure from task-level time data:

1. tr/t

2. t/t"

3. ('' o) x 100.. ..

4. t

Previous research offered only limited insight into how to meet the second research objective,

selecting a task weighting scheme. In developing the WTPT, tasks were weighted by the mean

recommended training emphasis rating and the cumulative percent time spent performing tasks

in a cluster- (23:6). However, such a weighting scheme did not appear appropriate for the current

research because of the nature of the PC measure. (PC is a quantity-based measure of a worker's

capacity to produce, and to weight it by mean recommended training emphasis rating and the
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cumulative percent time spent did not appear to make sense.) This was the only weighting scheme

discussed in Lhe literature. Since it did not seem appropriate for the current research, the literature

thus provided no particular direction for the second research objective.

The literature likewise offered only limited direction for the third objective, aggregating the

* task-level PC data. The only aggregation method discussed in the literature was weighted averaging

of the task cluster-level data (5:6). However, this seemed to be a reasonable aggregation method

and was chosen as the method of aggregation for this thesis.

The literature did provide significant guidance for the last and most important objective,

developing prediction models. Three models having relevance to the current research (response of

PC or performance time) were discussed in the literature. These models wer&

1. Logistic model for predicting PC

2. Linear model for predicting PC

3. Learning curve model for predicting performance time

Since there was little or no guidance provided for the second and third research objectives,

the research direction suggested by the literature can best be summarized in Figure 9. In Figure 9,

the individual boxes indicate the resp -e formulation and model type combinations which existed,

given previous studies. The darkened Du.:;es indicate which combinations were inappropriate due

to response formulation and miodel type incompatibility. Written in the appropriate boxes are the

studies that w~ere done for a given response formulation and model type combination. An emiptNy

box indicates no studies have been (lone for a particular combination.

It. was decided that. this thesis would incorporate one of the PC formulation and model

type combinations for which a previous study had been done. This was to take advantage of the

information available as a result of the p~revious study. This left three choices:

1. Logistic Model with the V1/ formulation
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Figure 9. Graphical Representation of the Research Direction Suggested by the Literature

2. Linear Model with the tC/t formulation

3. Learning curve model with t formulation

Because Carpenter and others, using the logistic model with the t'/t formulation, obtained

higher R2s than Faneuff and others did with the linear model, the first combination above was

determined a better alternative than the second. And, because the learning curve model seemed

inappropriate for modeling overall job performance, the first combination also appeared better than

the third. It was thus decided that given the estimated time data collected under the Productive

Capacity Project, the response, PC, would be formulated as V/1, and the regression model for

predicting it would take the form of the logistic model. The remainder of this thesis documents

the research performnd to develop the regression-based job performance model, using the PC for-

mulation /It and the logistic regression model.
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III. Methodology

The last two chapters were designed to provide the reader with a substantial background on

modeling, and the Air Force's job performance measurement R&D leading up to and including the

first research effort under the Productive Capacity Project. (21). This chapter describes the steps

taken in developing the experiment .1 matherndtical models for predicting the job performance of

Air Force Aerospace Ground Equipment (AGE) personnel given the estimated task performance

time, aptitude and experience data collected under the Productive Capacity Project. Development

of such descriptive models was of course the primary research objective of this thesis. This chapter

begins with a brief overview of the subjects and data used to meet the research objectives. Following

the overview of subjects and data, the specific steps taken to meet each research objective are

discussed.

3.1 Subjects.

The experimental subjects were 204 airmen and NCOs studied by Leighton and others under

the Air Force's Productive Capacity Project (21). The subjects were assigned to Air Force spef.ialty

454X1, AGE. AGE personnel are the airmen responsible for inspecting, maintaining and repairing

necessary ground equipment used to support aircraft and Ground Launcheo ,:ruise Missile (GLM)

systems (8). Such ground equipment is called aerospace ground equipment and includes items such

as electrical generators, heaters, hydraulic bomblifts, and air compressors.

The subjects were from the Air Force bases listed in Table 5. The procedures used to select

the experimental subjects are described briefly in section 2.3.2.5 and in depth in the technical

paper by Leighton and others (21). Figure 10 through Figure 13 describe some notable sample

characteristics.

As can be seen in Figure 10, the vast majority of the sample were E-3 (Senior Airmen) or

E-4s (Sergeants). Also, Figure 11 shows that, most of the sample was from the 5 skill level, with
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much smaller numbers being from the 3 and 7 levels. In reference to the subjects' job experience,

Figure 12 shows the majority of the sample were likely first-term airmen (121 our of 204, or 59.31%)

as indicated by job experience between zero and 48 months (Some retrainees might also show a

job experience less than or equal to 48 months but have significantly more Air Force experience.).

Note also that 88.73% of the sample had eight years or less experieice, and only about 2.45% had

more than eight years experience. Also, observe that the experience data appear positively skewed,

meaning the preponderance of subjects were associated with job experience measures near the low

end of the experience range.

The aptitude distribution in Figure 13 indicates that the sample Mechanical aptitude per-'

centile scores were distributed between 46 and 99. The ASVAB Mechanical score (M) distribution

was considered imnportant because the M score was used as the aptitude predictor in the regression

modeling. The M score was selected as the aptitude predictor because there was a minimum M

score requirement for entering the AGE specialty. This indicated that mechanical aptitude had

been previously identified by the Air Force as being somehow related to performance in the AGE

specialty, thus M seemed appropriate as an aptitude predictor variable for the current study. The

Mechanical aptitude sco~e distribution was restricted to values generally greater than 51 because

this is the current mini lurn Mechanical aptitude score requirement for entering the job. (An ad-

ditional requirement of an Electronic percentile score (E) of at. least 33 also exists for entering the

job (8).)

Table 9 provides a two-freouency distribution of subject aptitude by job experience. Recall

that aptitude and experience are the predictor variables. The two-way frequency distribution was

provided to offer insight as, to what the true effective range of the estimated regression model is.

In other words, sparse or null cells in regions of Table 9 indicate that the regression model should

•. )be interpreted cautiously in such regions. This is because the shape of the estimated response

surface in such areas waq d4 termnined by relatively few lata points. Note that. Lite matrix depicted

.7 67



_I ,

Table 9. Two-Way F-equency Distribution of Sample Aptitude by Job Experience

Months of Job ___ ASVABMechanical Percentile Score
Experience [46-55 56-65 66-75 I76- 6-95 96-99 Unknown Total

0-12 0 5 1 4 3 0 0 13
13-24 4 5 12 5 2 2 1 31
25-36 1 10 12 9 8 4 0 44
37-48 2 8 10 6 5 1 1 33
49-60 1 6 8 7 3 2 3 30
61-72 0 0 3 1 2 1 5 12
73-84 2 2 0 1 5 0 3 13
85-96 0 1 2 1 0 0 1 5
97-108 1 0 0 0 0 0 0 1

109-120 0 0 0 0 1 0 4 5
121-132 0 0 1 0 0 0 1 2
133-144 0 0 0 0 0 0 0 0
145-156 0 0 0 0 0 - 9 0 0
157-168 0 0 0 0 1 0 2 3
169-180 0 0 0 0 0 0 1 1
> 180 0 1 0 0 0 0 0 1

Unknown 1 2 5 o0 1 0 ll1 767
[ Total 12 40 54 34 31 10J 23 204

in Table 9 is very sparse beyond 96 months of job experience. The estimated models may thus be

tenuous in that region.

In summary, the sample tended to be E-3s ani E-4s, with skill levels around 5. Further, the

airmen tended to have less than eight years of job experience, and aptitude covering the somewhat

restricted range of 46 to 99.

3.2 Data.

As previously mentioned, the data used in this thesis were collected under the Air Force's

Productive Capacity Project, by Leighton and others, between March and September 1990 (21).

A brief overview of the Leighton and others' research, to include data coliection, was included in

Section 2.3.2.5. Again. the reader is referred to (21) for a complete description of that research.
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The primary data used were the estimated task performance times provided by each subject's

supervisor. Associated with each subject was his or her supervisor's estimates of how fast he or

she could complete each of 50 job tasks while simultaneously working as quickly as possible and

maintaining an acceptable level of task quality. Complete task descriptions are included in Table 22

at Appendix A.

The tasks selected for analysis were those that tend to be performed by fairly junior and

intermediate personnel. The tasks included mostly hands-on production-type tasks as opposed to

the supervisory or management tasks that more senior personnel perform. With this in mind, the

sample described in the previous section appeared to be a fairly reasonable sample as indicated by

the grade, skill level and experience characteristics provided.

Not all subjects had a complete set of 50 task ratings. Some supervisors did not provide all

ratings for all subjects. As a result, a relatively small numb er of missing values existed.

As previously indicated, other primary data used for the analyses included the subjects' self-

"reported level of job experience, and the subjects' Mechanical "omposite score from the ASVAB

obtained when applying for enlistment. These data were used as predictors in the mathematical

prediction of the subjects' productive capacity. As previously menL..rneC' tif- 4 aptitude score

was chosen as the aptitude predictor because scores on this composite help determine a recruit's

.... .. eligibility for entering the AGE specialty.

"Secondary data of interest were the subjects' Job Knowledge Test percent correct scores

(JKT), the supervisors' global or overall estimates of the subjects' PC (GPC), and a PC measure

derived from actual stopwatch times of a limited subsample of the subjects (MTPC). These mnca-

sures were used as a basis for comparison for the regression model results derived inI this thesis.

Figure 14 provides r graphical representation of the data used in the analyses.
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RESPONSE PREDICTOR MEASURES FOR

INFORMATION VARIABLES COMPARISON

ESt. Est. Est. Mechanical Months of Global PC Job Krnwlcdge Mean Timed
Time on Time on Tune on Score Job Experience Rating Test Scoi ce PC
Task I Task2 . . . Task 50 (APT) (EXP) (GPC) (J11I) (MITPC)

Airman I

A nrman 2

Airman 204

Figure 14. Graphical Representation of the Data Used in the Analyses

3.3 Procedure.

The preceding sections provided a brief overview of the experimental subject sample and the

relevant data collected. Discussion may now proceed to the actual steps taken to meet the research

objectives. The reader may wish to keep in mind that although the primary research objective

was to develop regression-based job performance models, the first three research objectives (see

Section 1.3) were concerned only with the response information, the estimated task performance

times.

3.3.1 Formulating a Productive CapacityA Measure fro, ;l " ed Task Performance Times.

As mentioned in Chapter 1, it was necessary to transform the estimated task performance times

to give then interpretability and to allow them to be aggregated across tasks.

In reference to Figure 4, the formulation of a PC measure from thie raw time data is associated

with first phase of the model building process, data collection and preparation. Of course, the PC

formulation was only concerned with the preparation part because the data had already been

collected. In reference to Figure 14, the PC formulation involved edit ing and transforming the data

under the Est. Time on Task i columns.
A
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3.3-1.1 Defining Task-Letvei Productite Capacity. Task-level PC was defined ac-

cording to the Carpenter and others formulation t'/t (5:21). Recall that t, is the fastest possible

completion time for a given task, and I is a subject's completion time. in reference to Figure 14,

the ts are the entries under the Est. Time on Task i columns. The ts were derived from the

minimum observed time in each such column.

As explained at the end of the previous chapter, the t*/t formulation was selectod over tile

other possible formulations. The t*/t formulation has some desirable characteristics which made

it a reasonable choice. First, unlike the other formulations, that of Carpenter and otthers yields

values that range between zero and one, thus lending themselves to logistic regression models.

Recall that it was the logistic regression models of Carpenter and others that yielded the highest

reported model R2s for an) of the PC studies (5) (13) (38). Second, the Carpenter and others

formulation maintains the de.3irable property of being nicely interpretable. It can be interpreted as

an individuals work capacity as a proportion of maximum possible capacity.

3.3.1.2 Editing the Ratv Estimated Time Data. Before the PC measures were

computed from the estimated task performance times, the estimated times were edited to control

for serious outliers. As Neter, Wasserman and Kutner (1990) point out, "Outliers cati cause great

difficulty." (27:121) They describe how when least-squares estimation is used in trying to predict a

response, a fitted surface can he palled disproportionately towarý an outlier. They suggest discard-

ing an outlier "if there is direct evidence that it represents al er or in recording, a miscalculation.

a malfunctioning of equipment, or a similar type circumstance." 127:122) "l'he reason that editing

wes justified with the raw estimated time data is because the for nat ill which tle time esltimats,

were collected was a type of free.res poese format. This means tha there was no liiit at ion oil the

answers that could be giv'en. Recall that when the supervisors pro, ided their iitle estinmates, the'%

were provided with previously created bencuhuark scales showing SMEs' opinions a. to what the

fastest, normal and slowest completion limes were. However, these were to be used as tw; e.uI.o,-
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Figure 15. Histograms of the Raw and Edited Estimated Times for Task G179

leave-it guidance for the supervisors in making their estimates. The supervisors were not required to

keep their estimates between the fast and slow time benchmark times if they did not want to. This

resulted in a free-response format. One problem with the free response format is that responses

have a tendency to wid, ly vary, even to extremes. This necessitated the need for data editing.

To control for pct, ntial outliers, the raw time estimates for a given task were edited by pulling

in all values that were beyond L three standard deviitik.n.s from rean. In othso words, all values

beyond three standard d,,viations were recoded to a value of the mean ± three standard dcrtations.

This was done because for a distribution of measurements that is approximately bell-shaped, the

interval between ± three standard deviations will contain almost all the measurements (25:9).

Thus, anything beyond these limits was considered an outlier, and recoded. Values beyond three

standard deviatioi s from the ntan were recoded and not discarded because these outlying data

were not considered to be transcription errors or rest,it.s of some other error, but an estimate from

a supervisor who did not. happen to agree with the range of times provided. The recoding was thus

(done to retain the information contained in the outlýing points while keeping some consistency iIt

the ratings and keeping the variance at a reasonable level. Figure 15 provides an example of tht,

effects of the editing on the raw data for one task, G179.
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3.3.1.3 Computing the Productive Capacity Measure at the Task Level. As previ-

ously mentioned, task-level PC was defined as tIt. In the actual computation, t" for a task was

computed as .99x (minimum estimated time for the task (after editing)). Again, in Figure 14, the

ts are the entries under the Est. Time on Task i columns and t's are derived from the minimum

estimated time in each such column. This computation of t" accounted for the fact that true

fastest possible time was probably not recorded for this sample, but is likely somewhat less than

the sample minimum. After computing V" in this fashion, the PC measure t/Jt was computed for

each individual for each task.

3..'.1.4 Editing the Productive Capacity Measure at the Task Level. After comput-

ing the task-level PCs, a review of their histograms indicated that the editing of the raw estimated

times was not enough to control for serious outliers. Several of the task PC' distributions still

indicated additional obvious outliers. This indicated the need for further editing.

The task-level PCs were edited much the same as the raw estimated times. For each task,

PC measures beyond ± three standard deviations from the mean were pulled in to values of the

mean ± three standard deviations. Unlike the diting of the raw estimated times, this editing

influenced the interpretability of the PC measure. . call that PC is interpreted as an individual's

output as a proportion of maximum possible output. As an example of how the interpretability

was influenced, consider an example where the mean ± three standard deviations defines the range

of .2-.8. Assume that all values outside of this range are considered extreme outliers and recoded

as .2 or .8, depending on which side of the interval they fall. The recoding is done because values

outside of the range mean ± three standard deviations are considered impossible. After recoding.

the range of PC values is not zero to one but .2 to .8. Since .2 :,resnts the new lowest possiblc

output level, it must correspond to a PC of zero. Likewise, sin e .8 represents the new highest

possible output level, it must correspond to a PC of one. To make .2 and .8 corresl)ond to zero and

one respectively, the rescaling transformation in Equation 17 was made on Ihe, edited PC values for
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the task. The rescaling ensured the interpretability of the PC measure as an individual's output

as a proportion of maximum possible output.

The rescaling transformation function in Equation 17 is a linear function of tile original PC

data. This means that the transformed data will exhibit exactly the same linear associations (same

correlation coefficient, same linear regression results, etc.) with other variables as the untransformed

data. The rescaling may, however, influence logistic regression results because the logistic model is

not a linear model in its original form.

A small adjustment made to the rescaled values was to recode the rescaled value of zero to

.01, and rescaled value of one to .99. This was to ensure that the logistic model would be defined

for all computed rescaled values. ,The range of tile logistic function does not include zero or one.)

PCo6, - PC.i.
PCmax - PCmi. (17)

where

PCrescaled = PC rescaled to 0-1 space

PCob, Observed value of PC

PCnmin = Minimum observed value of PC

PC","i Maximum observed value of PC.

After reviewing the histograms of the edited, rescaled PC values, 17 tasks still showed serious

outliers. These were G171, G 179, G181, 11238, 1251, 1255, 1264, 1265. 1283, 1284, 1299, J332, J-3-17.

L406, N1444, N48b, P549. One final editing and rescaling was applied. This time, outliers from

the 17 tasks were identified through subjective judgement by the author. The outliers were then

pulled in to the closest reasonable observed value. The reedited PCs were then rescaled according

to Equation 17, and the adjustments to the zero and one values were made. This completed the

74



/COMPUTED PC EDITED PC

Frequency Frequency

220 220

900 31 20D 101
II10 ls0

too [sio
160 1410
140

1120

100 100

go01s01a 60

40 40
20 20

.0D .12 .24 -36 .41 .60 .72 .14 .96 10 .00 .12 .24 .36 .41 60 .72 .84 .96 1.0

Inteml Midpoint (PC) loterr Midpoint (PC)

RESCALED PC > REEDITED RiSCALED PC

(FINAL VERSION)Ffequency, Frequency.

220

I1141
160 48
140 39

120 36 3

100 23

so 24

40 Ob.vi.oOmen 12
s 3 6

.00 .12 .24 .6 .44 An .12 .84 .96 i .00 .12 .24 36 .4 .6 .72 24 .96 11
Interval Midpoint(PC) Interval Midpoinl (PC)

Figure 16. Histograms of the Productive Capacity Values in the Editing Process for Task G179

data editing for the PC task variables. Figure 16 provides an example to show the effects of the

PC editing a..d rescaling for task G 179.

After the final editing, summary statistics were computed for the task-level PCs for compar-

ison to the summary statistics for the associated raw estimated times. This comparison was made

primarily to determine if the editing had the desired effects of outlier .rnd variance control. Of

primary interest was the cofljiciunt of rarintion. The coefficient, of variation, C0, is a measure of

the dispersion of the distribution of a variable. The computational formula for CV is show'n in

Equation 18 (26:388).
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CV - - (18)

where

CV = coefficient of variation

8 = standard deviation

X = arithmetic mean.

CV' expresses a distribution's dispersion relative to the distribution mean, thus making the

measure compara.ble across variables with different distributions. A CV of less than one is generally

indicative that a distribution is not highly variable, thus partially indicating that the distribution

is not subject to severe outliers.

Having computed CV for both the raw estimated times and final PC measures for each task,

it was possible to assess the effects of the tI/t transformation, the editing of the raw times, and

the editing of the PCs on the response data.

3.3 2 Selecting a Task Weighting Scheme. The selection and application of a task

weighting scheme still involved the data preparation phase of the regression model building process

depicted in Figure 4. In reference to Figure 14, the selection of a weighting scheme involved the

identification of appropriate weights for each Est. Time on Task t column to give the data derived

from each column an assigned level of importance. This was to give the task-level data varying

levels of influence when computing an overall measure.

Because the P(' mieasure is time-based and reflective of overall worker output, it seeored most

appropriate to wv ght he tasks by the average amount of time individuals spend doing each task.

If the individual unde, study is slow on some tasks and fast on others, it is necessary to consider

lhe relative amount of time spent on each task to accurately assess overall capacity. To illustrate,
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consider the extreme situation in which a worker is exceptionally fast on all but one job task.

And, say the worker is exceptionally slow on that one outstanding task. If the job requires the

individual to perform the outstanding task 99% of the time, his or her productive capacity should

be comparatively low. This is despite the fact that his or her performance is exceptionally good oil

the other numerous tasks that are infrequently performed.

The Occupational Measurement Squadron collects relative performance time data as part of

their periodic surveys of the AFSs (40). One such measure outlined in the Occupational Survey

Report is Average Percent Time Spent Performing Duties (40:23). In the report, the data is broken

out by skill level. The task weightings used in this thesis were computed as an average of the

average percent time spent for the skill levels that would generally be expected to do the types of

hands-on tasks under study (skill levels 3, 5 and 7). Because of thle nature of tile available average

percent time spent data, weights had to be derived for each duty area, and the duty area weight

was applied to each task from that duty area.

Overall, the selected weighting scheme was designed to give greatest importance to tasks from

the duty areas that are performed most often by 3, 5 and 7 skill level airmen.

3.3.3 Aggregating the Task-Level Data into an Overall Productive Capacity Measure. As

with the first two research objectives, this one dealt with the data preparation phase of the model.

building process depicted in Figure 4.

.Having computed the task weights, it was possible to define and compute aggregate or overall

PC per individual. The following discussion describes how this was done.

3.1.3.3.1 Defining and Computing Overall Productive Capacity. To derive a single

PC mneasureL for anl inidividual from his or her task-level data, it was necessary to somehow collapse

task-level ratings into a single overall measure. Figure 17 presents a graphical illu,,trat ion of thle

:ask-level data aggregation.
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Figure 17. Graphical Representation of the Task-Level Data Aggregation

This aggregation of the data was accomplished through weighted averaging. Aggregate or

overall PC, then, was defined as a weighted average of the subjects' final edited and rescaled task-

level PCs. Weighted averaging was used because previous studies had successfully used weighted

averaging as an aggregation method (5). Also, weighted averaging is a commonly accepted and

frequently applied statistical technique used to aggregate data (of the same units) that differ on

known dimensions. Equation 19 shows a mathematical representation of how the aggregate PC

measures were defined (21).

PC•at,9 = : =2 uP§ (19)

where
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PCto,,g = a weighted average of task-level PCs

PCi = the individual's PC on task i

wi = the weight for task i

n = tie number of task measurements for the individual.

A simple, or unweighted, average was also computed for strictly comparative purposes. The

unweighted and weighted average PC values were compared through summary statistics and cor-

relational analyses. The correlation statistic used was the Pearson product-moment correlation

coefficient, r (26:429). The computation for r is shown in Equation 20.

nr E-"u=,UY - (E"=, U,)(E= V) (20)ir == i0V/"En•= u,2 -(E,-_ ui)2][n•~ ETlv, - (Et1 1,)21

where

r = Pearson product-moment correlation coefficient

i = observation number

n = number of observations of U and V

Ui = observation i of a variable U

Vi = observation i of a variable V.

The Pearson correlation coefficient is a measure of linear association between two variables.

The coefficient ranges between -1.0 and 1.0. Measures near -1.0 and 1.0 indicate a high degree of

linear relationship. A negativ oefficient means the measures are inversely related, or onf measure

tends to be high when the other is low,

The unweighted and weighted average PCs were compared via summary statistics and r to

determine if the measures were unique. The idea was t hat if the weighted and unweighted measures

were statistically similar and highly positively correlated, then the weighting added no uniqueness
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Figure 18. Graphical Representation of the Regression Models Developed

to the overall measure. Similar summary statistics and high correlation would thus indicate that

the weighting scheme added nothing to the computation of overall PC beyond what could be gained

by simple averaging.

3.3.4 Developing Prediction Models. After computing the aggregate PC variables, it was

possible to begin the modeling phase. The following sections describe the steps taken to complete

the regression modeling at the aggregate level and also at the task-level. Figure 18 provides a

graphical representation of the regression models to be developed. The goal of the regression

analysis was to determine the 0 parameter estimates that would define the mathematical function

of the predictors depicted in the model box.

3.3-.4.1 Editing the Predictor Variables. The previously discussed research objec-

tives each dealt, with preparation of the response data for the regression modeliag of job perfor-

mance. Like the response data, the predictor data had to be prepared in accordance with the first

phase of the model building process depicted in Figure 4. In reference to Figure 14, the graphical

data file depiction, the following editing procedures were applied to the columns under the heading

Predictor Variables.

As with outlying response valu',s, outlying predictor values can be probl.-ijiatic. "Outlying

cases may involve large residuals and often have dramatic effects on the fitted Irasl-squar,!s re-
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gression function." (27:392) Recall that the predictor variables are aptitude (ASVAB Mechanical

percentile scores) and experience (months, ofjob experience). Frequency distributions and pie rharts

for these variables were provided in Table 9, Figure 12 and Figure 13.

The frequency distribution of aptitude scores indicated th. there were no obvious outliers or

other apparent problems with the aptitude data. The scores appeared near normally distributed

between 46 and 99. The experience variable's distribution appeared positively skewed with tOe

vast majority of the observations (88.73%) having 96 or less months of job experience. Note that

the frequency distribution shows one potential outlier with a value greater than 180 months. The

actual value recorded for this observation was 283 months, well beyond the next highest value of

169. A review of the data file showed that no subject. had more than .195 months of total Air Force

experience. It is of course impossible to have more Air Force job experience than overall Air Force

experience thus the value of 283 was identified as a miscoding. The case was dropped from further

analyses.

3.3.4.2 Fitting the Regression Models. The editing of the predictor variables

concluded the data preparation phase of the model building process. The next phases, according to

Figure 4, were reduction of the number of predictor variables and model refinement and selection.

The following discussion describes these phases applied to the current research.

Recall from the literaturc rcview that the model which yielded the highest R 2 s among the

Air Force's PC studies was the logistic model used by Carpenter and others (5:21) (13) (38). With

this result in mind, a logistic model was fit to the PC datp. for each of the 50 tasks, and also to the

weighted and unweighted average PCs. The logistic model and logistic regression were discussed

only briefly in the previous chapter. Following is a more in-depth discussion.

The logistic regression model is a model that is frequently applied in situations where the

response v'riable is binary, zero or one. In such situations, the observations are often classified into

groups based on values of one or more predictor variables. Thus, grouping of ohservatioivs allows
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the individual zero/one response observations to be collapsed into a proportion for the group. The

zero/one response often indicates an observation's possession (one) or lack (zero) of some trait

of interest. Grouping observations collapses the responses into a single measure representing the

proportion of observations possessing the trait. The logistic function, being restricted to the range

between zero and one, is ideally suited for modeling such proportions given known levels of the

predictors. Logistic regression is thus frequently used to predict the proportion of individuals in a

given group which possess the trait of interest.

A general form of the logistic model is expressed in Equation 21 (17:25-26).

) • + • (2 1)1+ eg(r)

where

,r(z) = a response variable (ranging from 0 to 1)

g(x) = some function of the predictor variables (linear in the 13 parameters)

e = the model error terms.

Note that the logistic model is not a linear model because it is not linear in the /3 parameters

which would be contained in the function 9(x) (The function g(z) is linear however. This fact will

be used later.)

The logistic function is generally S-shaped as depicted in Figure 19 and Figure 20. These

represent example plots of logistic functions with one and two predictors, respect ively. The addition

of higher-order and interaction terms and the nature of the relationship between the variables can

cause the logistic function to take oi' shapes other than the standard S-shape. This will be shown

in Chapter 4.
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Figure 19. Plot of a first-Order Logistic Function with a Single Predictor
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Figure 20. Plot of a First-Order Logistic Function with Two Predictors
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As mentioned, the logistic model is not linear in its original form. But, it can be linearized

using the logit transformation. The logit transformation is shown in Equation 22.

Logit of -,r(x) = ln( ir(x) (22)1I-

Transforming the response (a proportion) through the logit transformation allows the logistic

function to be written in linear form as in Equation 23. The hinearized logistic function is called

the logit response function (28:583).

ln( r ) =g(z)-+ (23)

where

7r(z) = a response variable (ranging from 0 to 1)

In( ) = the logit of the response, r(x)

O(z) = some function of the predictor variables (linear in the coefficients)

£ = the model error terms.

Although the logistic model can be expressed as a linear model, standard linear regression

cannot be applied if the response data 're origini lly binary and the analyst wishes to apply standard

linear regression inferential statistics. Recall from the linear regression discussion in Section 2.1.1

that application of the linear regression inferential statistics requires the model assumption that

the error terms, (, are distributed N(O. .•2). It so happens when the response data are origi.tally

binary. t:,- error terms are not normally distributed. but binomia!ly distributed (17:7) Also. there

is nonconstant error variance (heteroscedasticity) across varying levels of the predictors (28:581).

These facts indicate that, ordinary least squares estimation of the model parameters is inappropriate.

When there are a sufficient nu:nber of repeat observations at each level of the predictors, the
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parameter estimates can be obtained via weighted least squares (28:584-589). Otherwise, the

parameters may be estimated using maximum likelihood estimation (28:589-595).

As a review, logistic regression is often applied when the response data are binary. And, tile

logistic regression model is characterized by three properties:

1. Nonnormal error terms

2. Nonconstant error variance

3. A constrained response function (between zero and one) (28:580-581)

These properties make the use of ordinary least squares estimation of the parameters inappropriate.

The above discussion or logistic regression assumes that the response data are originally bi-

nary, zero or one, data. If the response data are proportions, but not derived from binary data,

an adaption of logistic regression is possible (see Reference (5)). Productive capacity, formulated

as tr/t, is one such proportion which may be modeled with the adaption of the logistic regression

model. When the proportional response data are not derived from binary data. the logistic re-

gression model is not necessarily characterized by nonnormal error terms and nonconstant error

variance. This means that estimation of model parameters through ordinary least squares esti-

mation may be possible. There is of course the requirement to check the linear regression model

assumptions. Thus, the adaption of the logistic regression model to the nonbinary response case

involves:

1. lUse of the logistic function

2. Linearization of the logistic function through creation of the logit response fiinction

3. Estimation of the model parameters using ordinary least squares

4. Aptness anpiy:,is to check normality of error terms

This adapted logistic regression model was used to model PC in this thesis.
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Although primary interest was in predicting the aggregate or overall PC measures, the task-

level regressions were run as a screening exercise to identify any trends in the relationships between

the predictors and PC across tasks. This was to provide insight as to whether the number of

predictor terms might be reduced (the second phase of the model building process). The adapted

logistic model that was fit was a full second-order model to include aptitude/experience interaction

terms. A full second-order model was selected to account for any curvature or interaction effects

that may not have been accounted for with a first-order model. The model that was fit at the task

and aggregate level can be found in Equation 24.

PC = + (24)1 + e00+0 I 'I+132Z'+,03-rI -r+/34-r I+Os• 2

where

PC = productive capacity

X1 = ASVAB Mechanical percentile score

Z2 = months of job experience

130, 01,032./33, 34 , 35  = parameters to be estimated

e = model error terms.

The logistic model in Equation 24 was written as the linear model in Equation 25. Writing the

equation in this fashion (linear in the parameters) allowed the model parameters to be estimated

using least-squares regression.

In( = ;3 + + Xr + )32 X2 + +3
3X i2 + ;i + ;zr., + (25)

where
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In( the Iogit of productiie capacity

= ASVAB Mechanical percentile score

x2 = months of job ciperience

O 01, 0,03:, a,4, 0,%= parameters to be estmated

= the model error te rms.

After the logistic models were fit to the 50 tasks and the aggregate measures, a forward

stepwise regression was run for the aggregate case (weighted average PC). This was in accordance

with the second phase of the model building process, reducing the number of predictor variables.

After performing the stpipwise regression, the resulting aggregate model was subjected to an

aptness analysis to include a plot of residuals vs. predicted values and a normal probability plot. In

reference to Figure 4, the aptness analysis concerns the third phase of the model building process,

model refinement and selection.

After completing the regression and aptness analyses, predicted PC values were obtained for

the aggregate model for use in subsequent correlational analyses. Recall that, the logit response

function in Equation 25 yields predicted values not for PC, but for the logit of PC. As a result,

predicted PC measures were derived from the predicted logits using Equation 26.

ePctoq,,

PCf = •(26)
I + ePcto..w

where

PC, = predicted productuir capac•lty

PCiogji = the predicted logit of productne capacity.
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3.3.4.3 Analysis of the Aggregate Measures. Once the predicted aggregate PC

measures were computed, they were correlated with other measures of job performance to ijclude

JKT (Job Knowledge Test) scores, GPC (supervisor's global PC ratings), and MTPC (mean timed

PC). The measure of correlation was r, the Pearson correlation coefficient.

The variable MTPC was created by AL/HRM using the PC formulation t/t*, an inversio', of

the formulation of Carpenter and others (21) (7). MTPC was computed as the average PC across a

limited number of tasks where the t values where derived through actual timing of tasks as opposed

to supervisor estimation. Because MTPC wa.s computed from t/t* values, higher values indicated

lower performance levels. This means that a negative Pearson correlation coefficient woeld be

expected between MTPC, and a variable whose higher values indicate better performance.

This correlational analysis was to provide insight as to whether the aggregation method,

weighting scheme and fitted model were effective in capturing an individual's true overall PC.

Significant correlation with other performance measures was to be interpreted as evidence that the

aggregation method, weighting scheme and fitted model were appropriate.

Last, the fitted logistic response surfaces were plotted for the weighted aggregate variable to

provide a graphic illustration of the fitted model. Surfaces were plotted for the entire effective range

of the predictor variables Finally, response surfaces rescaled to zero/one space (ee Equation 17)

were also plotted to increase the interpretability of the plots.



IWK Results

The preceding chapter specified in detail exactly what steps were taken to meet each research

objective. This chapter discusses the results of applying those steps and offers further discussions

on the significance of the research findings.

4.1 Formulation of a Productive Capacity, Measure from Estimated Task Performance Times.

As previously indicated, the primary response data used in the analyses were the supervisors'

estimates of the subjects' task completion times. In their raw form, the time estimates tended

to widely vary within a task, sometimes covering an unbelievable range of values. This implied

the need for editing of the raw time data to control for serious outlying cases. Table 10 provides

summary statistics for the raw time estimates, illustrating the sometimes extreme variation for a

task. For instance, note task G171 which shows an extremely wide range of values for the raw

estimated times. The raw times ranged from a minimum of one to a maximum of 2880 minutes. It

was considered highly unlikely that the true range of times is so variable. This led to the editing

as described in Section 3.3.1.2.

After the edited estimated times were computed, the task-level PCs were computed using the

t'/t formulation'of Carpenter and others (5:21). These required further editing and rescaling as

described in Sectioi 3.3.1.4. Table 11 shows the summary statistics for the final edited and rescaled

task PCs.

For the final edited values of the task PCs, the means ranged from .12 to .56 across tasks.

The standard deviations for the tasks ranged between .12 and .22. Note, in particular, that iii only

two cases was the coefficient of variation, CV, noticeably greater than one (for task 1299 and J332).

This is a very general indication that the task-level PC data are not highly dispersed relative to the

task means, and thus are probably not. highly influenced by extremie outliers. In contrast. Tabi, 10
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Table 10. Summary Statistics for the Raw Estimated Task Performance Times (in Minutes)

T&-_k _ n I Mean S.D. [ Minimum iMaximnum 7I7]

E120 201 11.38 5.16 2.00 35.00 .45

E143 201 9.70 3.90 2.00 30.00 .40
F153 194 17.43 19.60 5.00 270.00 1.12

F154 201 17.17 9.05 5.00 120.00 .53
F155 200 15.06 6.62 3.00 60.00 .44
F157 200 17.59 8.89 5.00 90.00 .51
F162 200 24.61 16.91 4.00 240.00 .69
G171 200 82.88 215.76 1.00 2880.00 2.60
G179 196 89.36 57.81 1.25 720.00 .65
GI81 199 274.84 341.74 2.50 2880.00 1.24
H202 201 14.43 126.60 2.00 1800.00 8.77

H203 200 27.25 66.83 10.00 720.00 2.45
11209 198 33.51 12.05 15.00 90.00 .36
11215 200 20.32 9.60 10.00 90.00 .47
11236 200 12.89 11.35 2.00 120.00 .88
H237 200 10.37 6.31 3.00 60.00 .61
H238 199 25.87 21.92 .60 300.00 .85
1247 200 10.31 6.06 1.00 60.00 .59
1248 200 13.29 12.92 3.00 180.00 .97
1251 195 $0.94 18.06 1.00 150.00 .35
1255 199 154.62 54.22 3.00 480.00 .35
1260 201 24.47 62.98 8.00 900.00 2.57
1264 200 70.57 71.74 1.00 720.00 1.02
1275 200 67.49 213.94 1.00 3060.00 3.17
1283 201 63.82 189.14 1.00 2700.00 2.96
1284 200 21.39 11.77 .53 120.00 .55
1286 200 57.94 27.71 20.00 280.00 .48
1299 201 121.24 49.39 1.92 480.00 .41
1300 201 19.93 7.29 5.00 60.00 .37
J332 198 142.85 209.05 2.75 2880.00 1.46
J340 198 33.78 12.91 3.00 120.00 .38

J347 198 65.07 55.38 1.00 480.00 .85
J355 198 42.42 19.18 15.00 165.00 .45
L406 200 36.80 34.64 1.00 480.00 .94
L421 199 28.99 12.88 10.00 120.00 .44
L436 196 32.27 25.55 10.00 285.00 .79
L437 200 10.28 6.72 2.00 60.00 .65
M444 196 65.10 39.21 1.00 480.00 .60

M446 200 63.68 201.76 20.00 2880.00 3.17
M447 195 20.19 14.08 5.00 180.00 .70
N475 184 20.63 8.31 5.00 60.00 .40
N477 201 37.12 13.14 15.00 120.00 .35
N486 201 80.40 27.63 1.00 240.00 .34

N487 201 40.34 105.26 10.00 1500.00 2.61
N488 201 49.46 13.40 20.00 90.0(1 .27
N494 200 16.73 34.67 5.00 420.00 2.07
N503 201 15.69 6.83 3.00 60.00 .44

P549 201 14.23 6.61 1.0 60.00 .46
P554 199 18.48 17.55 5.00 260.00 .95
P555 200 39.62 2-2.64 4.00 300.00 .57
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Table 11. Summary Statistics for the Final Edited Task Productive Capacity Measures

Task I n Mean S. D. Minimum Maximum I CGV
E120 201 .24 .18 .01 .99 .76
E143 201 .28 .19 .01 .99 .67
F153 194 .45 .16 .01 .99 .36
F154 201 .38 .18 .01 .99 .46
F15S 200 .32 .19 .01 .99 .59
F157 200 .34 .18 .01 .99 .51
F162 200 .35 .16 .01 .99 .46
G171 200 .26 .15 .01 .99 .58
G179 196 .29 .19 .01 .99 .67
0181 199 .26 .20 .01 .99 .76

H202 201 .50 .15 .01 .99 .31
H203 200 .56 .21 .01 .99 .37
H209 198 .38 .20 .01 .99 .53
H215 200 .45 .22 .01 .99 .49
H236 200 .30 .22 .01 .99 .72
H237 200 .35 .21 .01 .99 .59
H238 199 .35 .16 .01 .99 .45
1247 200 .24 .17 .01 .99: .72
1248 200 .40 .18 .01 .99, .45
1251 195 .25 .19 .01 .99 .75
1255 199 .26 .18 .01 .99 .72
1260 201 .45 .18 .01 .99' .40
1264 200 .19 .14 .01 .99 .72
1275 200 .38 .16 .01 .99: .42
1283 201 .40 .17 .01 .99' .42
1284 200 .19 .13 .01 .99 .71
1286 200 .37 .18 .01 .99 .49
1299 201 .13 .19 .01 .99, 1.43
1300 201 .34 .19 .G1 .99' .57
"J332 198 .15 .15 .01 .991 1.02
J340 198 .21 .12 .01 .99i .57
3347 198 .31 .18 .01 .99ý .60
3355 198 .40 .19 .01 .99 .48
L406 200 .28 .19 .01 .99 .70
L421 199 .35 .21 .01 .99 .60
L436 196 .39 .18 .01 .99 .46
L437 200 .32 .20 .MI .99 .62
M444 196 .12 .12 .01 .99 .98
M446 200 .47 .17 .01 .99 .35
M447 195 .36 .19 .01 .99 .53

N475 184 .35 .19 .Il .99 .55
N477 201 .37 .19 .01 .99 .53
N486 201 .20 .18 .01 .99 .91
N487 201 .44 .17 .01 .99 .39

N488 201 .36 .20 .01 .99 .54
N494 200 .42 .19 .01 .99 .45
N503 201 .28 .20 .01 .99 .74

P549 201 .29 .19 .01 .99 .65
P554 199 .48 .13 .01 .99 .27

V P555 200 .26 .12 .01 .99 .46
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Table 12. Average Percent Time Spent and Computed Task Weights by Duty Area

Duty Skill Level Task
Area 3 5 7 Weight

E 6% 10% 17% 11
F 18% 14% 7% 13
G 6% 5% 2% 4.33

H 13% 12% 7% 10.67
I 14% 13% 7% 11.33
J 5% 5% 2% 4
L 3% 3% 2% 2.67
M 3% 4% 2% 3
N 11% 8% 3% 7.33
P 8% 6% 4% 6

of summary statistics of the raw times indicates the coefficient of variation was greater than one

for 13 tasks. It is thus apparent that the editing was effective in controlling the effects of outliers

and getting the variance to more reasonable levels.

4.2 Selection of a Task Weightng Scheme.

After computing the task-level PCs, it was possible to weight them according to the weighting

scheme described in Section 3.3.2. Recall that the weighting scheme actually applied weights to

each job duty area, and all tasks from a particular duty area were assigned the same duty area

Weight. Further recall that the weights were based on the relative amount of time airmen spend

doing particular types of tasks.

Table 12 shows the average percent time spent on each represented duty area broken out by

each represented skill level. It also shows the computed weights by duty area. Again, the weights

were ai, average of the average percent time spent across skill levels

4.3 Aggregation of the Task-Level Data into an Overall Productive Capacity Measure.

Once the task-level PC' measures were computed and the task weights derived, it was possible

to compute the aggregate or overall PC measure. Recall that aggregate PC was defined as a
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Table 13. Aggregate Proddctive Capacity Measures Create-d

Variable Description
PC,,.iio Unweighted average of the final edited task-level PCs per individual.
PFC,,a,g Weighted average of the final edited task-level PCs per individual.
PCuw avi; Predicted value of the unweighted. average, PCuwal,.
PCWOV9 Predicted value of the weighted average, Pc,,aVg.

Table 14. Summary Statistics for theAggregate Productive Capacity Measures

Variable n Mean S.D. Minimum Maximum
PCuw,,,v 201 .33 .10 .02 .66
FCtua,,9 201 .34 .10 .02 .68
PC_.Cu a v 1 169 .32 .04 .14 .36
PCa,, 169 .32 .04 .15 .37

weighted average of the task-level PCs for an individual (see Figure 17). Also recall that a simple

unweighted average was computed for comparative purposes. Table 13 provides a brief description

of each aggregate variable created, for further reference.

The predicted values described in Table 13 were obtained from the estimated regression functions

which are discussed in the next section.

Table 14 provides some summary statistics and Figure 21 provides histograms for the ag-

gregate variables to give some insight into their distributions. Also, Table 15 shows the Pearson

correlation coefficient between the weighted and unweighted versions of the variables.

Table 15. Correlation Between the Weighted and Unweighted Aggregate Productive Capacity
Measures

Unwcighted Weighted Correlation
Variable Variable Coefficient
Picutuav Pelavy > .995

(n 201)

PCuuvavg P-Cwa'g > .994
".l !(n" 69)

Superscript a indicates significance at the a = .05 level.
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From the histograms of the aggregate variables (see Figure 21) it appears that the predictedi

values are negatively skewed. This is a reflection of both the shape of fitted response curves and the

experience and aptitude levels of the sample. In other words, most of the sample possessed levels

of the predictor variables which corresponded to the higher response points on the fitted response

surface. Again, the reader is referred to the next section for discussion of the fitted response

surfaces.

The summary statistics (see Table H4) and the Pearson correlation coefficients between the

weighted and unweighted versions or the aggregate variables (see Table 15) indicated that the

task weighting had negligible effects on the aggregate variables. The highly similar statistics and

correlation coefficients very near one suggest that the weighted and unweighted versions of the

variables are measuring approximately the same attributes. Thus, it appears that the weighting

scheme and subsequent weighted averaging were ineffective in defining overall PC beyond what

could be offered by simple averaging.

4.4 Development of Prediction Models.

As previously mentioned, full second-order logistic models were fit to PC both at. the task

level and at the aggregate level. Recall that the logistic model was linearized through formation of

the logit response function, and the parameters were then estimated throagh ordinary least squarts

estimation. Table 16 summarizes the results of the logistic model regressions for the tasks.

Table 16: Regression Results for the Full Second-Order Logistic Models
-t the Task-L.:vel

Task (X10-4) (x10-) (x10-4) Fo R"

jIntercept Apt 2  
-Ep2 Apt x Ezp Apt Exp

E120 -1.70 4.49 -2.02' -5.110 -.040 .06.1' 4.83' .13
E143 -3.57 -1.57 -1.966 -1.92 .037 .038" 2.44' .07
F.153 -.489 .636 -1.39" 1.47 -.010 .012 2.86a .08
F154 -8.22" -10.00 -1. 15b -3.83b .169' .053" 5.04" .13
F155 -6.07. -5.82 -2.506 -1.89 .101 .051' 3.96" .11
F157 -3.42 -3.88 -.633 -1.13 .059 .02i .98 .03
F162 -2.56 -1.91 --1.68" .A10 .031 .0256 2.98" .08
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Table 16: (continued)

Task (x10-') (x10-') (xl0'o) Fo R 2

Intercept Apt 2  Ey 2 Apt x Ezp Apt j Erp _

G171 -4.61 -3.34 ] -.881 -3.13 .066 .038 1.06 .03
G179 -4.19 -3.48 -3.91' 3.00 .048 .035 4.86' .13
G181 2.73 10.3 -1.76 -.002 -. 144 .029 1.87 .65
"1H202 -5.046 -6.38 -. 100 -1,98 li3' .022 1.79 .05
H203 -5.46 -5.9. -1.53" 2.31 .116 .040' 2.31a .07
H209 -1.96 -1.80 -1.42 .646 .027 .012 .63 .02
H215 -1.59 1.04 -2.27' -1.12 .001 .040 1.65 .05
H236 -9.23' -11.7' -2.244 -.838 .1896 .037 2.76' .08

H237 -6.40' -4.46 -.401 -5.77' .108 .048' 2.15 .06
H238 -2.92 -2.58 1.91' -1.19 .053 -. 007 3.02' .09

1247 -2.97 -2.48 -.940 2.64 .037 -. 007 .93 .03
1248 -4.03 -4.23 -1.69' -. 138 .072 .025 2.65' .08
1251 -1.06 1.07 -2.90" 2.93 -. 024 .013 2 .2 2 b .07
1255 -4.67 -3.45 -2.93a .757 .060 .031 3.54' .10
1260 1.22 3.25 -2.04' 2.94 -. 051 .001 3.50a .10
1264 -3.99 -2.79 -2.41' -.037 .042 .034' 2.70' .08
1275 -1.75 -1.63 -1.49" .367 .021 .016 2.17b .06
JIM3 .083 -.022 -1.49b 1.88 -. 013 .0C5 .86 .03
1284 -2.91 -2.09 -1.61' 3.32 .023 .002 2.4?' .07
1286 _5.81b -6.74 -1.29b -1.02 .113 .031 2.43' .07
1299 -10.68' -14.0b -3.29' 2.01 .2076 .026 2.76' .08
1300 -3.46 -3.81 -. 733 2.50 .059 -. 004 1.77 .05
3332 -8.22" -9.22 -2.47' .428 .144 .031 3.28' .09
J340 -1.59 2.79 -1.10' -2.12 -. 025 .029' 2.45' .07
.347 -2.25 2.47 -2.45' -. 140 -. 015 .037 3.42' .10
3355 -2.08 .160 -1.59' -1.26 .012 .032b 1.88 .06
L406 -5.34 -5.55 -1.97' .089 .091 .014 1.98b .06
L421 -3.28 -2.88 -2.61' - 473 .046 .03-6 3.00" .09
L436 3.33 6.31 -. 552 1.01 -. 100 -.005 .500 .02
L437 -11.49" -16.1' -. 944 -4.36 .258' .052' 3.17" .09
M444 -. 273 3.83 -1.74" 1.94 -.063 .007 1.08 .03
M446 -2.57 -2.88 -2.22' 1.73 .042 .023 5.04' .13
M447 -5.11 -5.65 -. 932 -1.07 .099 .020 1.05 .03
N475 -6.93' -10.5b -1.17 .970 .1566 .012 1.59 .05
N477 2.76 6.45 -2.10' 2.79 -. 107 .012 2.87' .08
N436 -6.14 -3.07 -. 130 -10.3" .081 083* 2.44' .07
N487 -2.86 -1.52 -. 817 -1.71 .043 023 1.78 .05
N488 2.49 7.19 - 1.65' -.295 -. 103 .020 1.36 .04
N494 -3.22 -2.40 -.401 -1.78 .051 .027 1.77 .05
N503 -3.95 -1.40 -.818 -3.57 .%40 .045' 1.97b .06
P549 -4.15 -5.02 -1.04 -.181 .078 .011 .49 .0k
P554 -2.82 -4.23 -.371 .067 .066 .008 1.03 .03
P555 .632 4.92 -1.39' -.481 -.068 .022 2.09b .06
Superscript b indicates significance at the u = 10 level

Supemcript a indicates significance at the n = 05 level



The regression results in Table 16 for the tasks indicate some consistent results. First, the

R2s were consistently low, ranging from .01 to '.13. Second, aptitude did not appear to have much

influence on task PCs as indicated by the statistical significance of the corresponding parameters.

The associated aptitude coefficients, 013, j14, or both, tested significantly different, from zero at the

a = .05 level for only two tasks. Third, experience seemed to be more strongly related to PC with

either #?2, 05, or both, testing significantly different from zero at the o = .05 level for 33 of 50 tasks.

It is important to note that the aptitude/experience interaction coefficient, 03, tested significantly

different from zero for only four tasks. Overall, these re.,ults were in partial agreement with those

of Schmidt and others and Alley and others (1) (36) . They also found that there does not appear

to be an aptitude/experience interaction affecting job performance. However, they found aptitude

to be an important determinant of job performance.

Overall, the task-level logistic models for predicting PC did not perform as well as AL/Il RM's

task-level learning curve models for predicting untransformed estimated tiimes (38). More of the

learning curve models (41 of 50) were significant anu they yielded generally higher R2 s (ranging

from .01 to .20). But, as mentioned, learning curve models are only useful for determining how fast

a piece of wor. can be completed given the worker's apt itude and experience level. A transformat ion

must still be applied to the time data to provide a standardized, interpretable work output meatsure

like PC. A second drawback of the learning curve model is that. it is difficult to develop a meaningful

model for predicting overall performance measures when the appropriate level of job specificity for

"data collection is the task level. There seems to be no meaningful way of aggregating task-level

performance times into an overall measure that could be predicted.

Because of the large number of tasks studied, detailed residual analyses to check model

aptness were not performed at the task level. Aln aptness analysis was performed for the model for

predicting tile aggregate measure.
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Table 17. Regression liesults for the Full Second-Order Logistic Model at the Aggregate Levewl

o 313 /2 ;33 /34 /35

Variable (x10-4) (X10-
4

) (X10-
4

) Fo R"2

Intcrcept Apt2 Exp2  Apt x Erp Apt Exp
PC1~ -2.97- -2.10 1-.1.241.0401.023- 1 6.07- 1 .16
Superscript a indica,.'s sigiutiicance at the o = .05 level.

Finally, in reference to t.Le task-level models, recall that they were run primarily as a screening

exercise to provide insight as to whether any model terms from the second-order model could be

dropped. The task-level nmodels obviously indicated that the terms including tlhe aptitude variable

were potential candidates for removal from the model. The aggregate model was analyzed, in part,

to further explore this possibility.

Table 17 provides the regression results for the aggregate variable, PC,,,av, regressed on apti-

tude and experience using the linearized logit response function. Table 17 contains some interesting

results. In predicting the aggregate measure, experience seemed to be an itnfluencing factor. This

was indicated by /32 and Or both testing significantly different from zero. The aptitude coefficients,

/31 and /34, tested not significantly different from zero. Overall, the results of the aggregate model

.paralleled the results of the task mode!s in that experiencei was an influeocing factor, but aptitude

and the aptitude/experience interaction were not. These! results again are in partial agreenlet

with those of Schmidt and others and Alley and others (1) i(36). They found no interaction effects

but in contrast, they did find significant. aptitude effects. In comparison to the Air Force's other

PC studies, the aggregate model R2 was comparable to those found for the AGE specialty by Fa-

neuff and others (13:10). They reported R2s of .17 and .20 using the ASVAB, E and M scores as

aptitude variables, respi-ctively. But, the R2s of the current study were much lower than that for

the aggregate model of Carpenter and others (R 2 =.44) for specialty 328X0 (5:22).

As menlioned, the results of the regression using the full second-order logit response model

for PC',,,, showed that none of the parameters for terms which included tle aptitudi neas-ure

tested significantly different from zero. This was further indication that the aptit ude predictor was
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Table 18. Forward Stepwise Regression Results for the Second-Order Logistic Model at the Ag-
gregate Level

Variable 00 /01 /32 /3 /34 13s
(x10- 4 ) (xI0-4 ) (x10- 4 ) F0  R2

Intercept Apt 2  Exp2  Apt x Exp Apt Exp

PCWG,,U -1.23a 0 -1.31- 0 0 .019- 12.69a .13
Superscript a indicates significance at the a = .05 level

Table 19. ANOVA Table for the Aggregate Productive Capacity Measure after Forward Stepwise
Regression

Source of

Variation SS df MS F0

Regression 5.73 2 2.87 12.69a
Error 37.50 166 .23
Total 43.23 168

Superscript a indicates significance at the a = .05 level

a candidate for removal from the model. A forward stepwise regression was then run beginning with

the full second-order model to determine if the aptitude terms could be dropped. The criterion for

a term's entry into the model was F statistic significance at thie a = .05 level. The same criterion

was used for a term's departure from the model. The forward stepwise regression did in fact drop all

terms involving the aptitude variable from the model. Table 18 provides the results of the stepwise

regression and Table 19 provides the final ANOVA table.

The model after stepwise regression was selected as the final model, provided that it. would

meet the linear model assumption of normality of error terms (c - N(0, o.2)). Figure 22 provides

the results of an aptness analysis for the final model to check the normality assumption. The figure

includes a plot of the model residuals vs. fitted values a normal probability plot of the residuals.

The top plot in Figure 22, a plot, of the residuals vs. the fitted values, shows a fairly even

band of points around the zero-residual line. This indicated that, the variance of the residuals and

thus the variance of the act ual error terms is fairly constant, across differing levels of the predicted

values. This homoscedasticity is, of course, desirable. If the error variance was not constant across
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Table 20. Correlation Between the Aggregate Productive Capacity Measures and Other Job Per-
formance Measures

I JKT I GPC] MTPC

PCSatg .08 .44a -. 13
(i = 193) (n 199) (n = 58)

PC-•.wg .220 .25a -. 27'
(n = 1691 (n = 167) (n = 51,

Superscript a indicates significance at the a = .05 level.

Superscript b indicates significance at the a = .10 level.

the different levels of the fitted values, then the model would not be appropriate for the fitted region

since it is assumed that the error terms, c, are distributed N(0,0- 2 ). The bottom plot, a normal

probability plot, shows a high degree of linearity toward the center of the data with a few outliers at

each end showing clear nonlinearity. Linearity is desirable because it indicates the actual residuals

and their expected values tinder the nortnal assumption are highly correlated. Linearity implies

normality of the residuals and titus normnality of the model error terms. The nonlinearity at the ends

of the plot was not overly worrisome since it is due to a relatively small number of outlying points.

Overall, the conclusion was that the fitted second-order logistic model with aptitude excluded was

appropriate for the data.
/

4.4.1 Correlational Analysis of the Estimated Model Results. After the aptness analysis,

predicted values of PCwas (PCIIGV) were obtained from the final fitted model. As part of the

model assessment, it was determined that the correlation between the final model's predicted values

and other job performance measures would offer insight as to the model's effectiveness. Table 20

shows the correlation between the computed and predicted aggregate variables and other previously

defined job performance measures collected tinder the Productive Capacity Project.

Table 20 indicates that the aggregate variable computed from the task-level PC measures.

PC,.,.,.,, correlated More highly with (PC than did the associated predicted variable. PC-',.,g.

This is not terribly strprising since GPC, like PCu,.g, is also the restult of supervisor estimlation.
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"Fable 21. Correlation Matrix of the Other Job Performance Measures

___ JKT GPC MTpc
JKT 1.0a

(n = 196)

GPC .12 1.0a

(n = 191) (n = 199)

M TPC -.44a -. 18 1.0a

I (n = 60) (n = 57) (n =60)

Superscript a indicates significance at the a = .05 level.

The predicted values, PCwavg, correlated more strongly with the objectively-derived measures,

JKT and MTPC.

There seemed to be a pattern of higher correlation between the predicted values and the more

objective measures. A similar pattern existed between the computed average measure, PCua,,, and

the more subjective measure, GPC. This seemed to indicate that the subjectively-derived measures

are measuring different dimensions of performance than the predicted variable and ,he objective

variables.

One final noteworthy finding is the relatively low correlation between menan PC derived from

actual stopwatch times (MTPC) and computed average PC derived from supervisor estimates

(PC.,avg). This is an indication that the supervisors' ratings may be measuring a different dinmen-

sion of performance than the actual stopwatch times, or a great deal of notse resulting from rating

biases of the supervisors.

To summarize the results of the correlational analysis, PC,,,a,, correlated more strongly wit I

GPC than did the associated predicted values This seemed to indicate that predicted values, and

thus the model, captured less of global PC (,s judged by the supervisors in their GPC ratings) thani

the comput, d average data. This may be an indication that. the model is not measuring what it is

supposed to-overall PC. But, on the other hand, the predicted values did correlate more highly

with the other objective measures indicating that the model is predicting job performance ih at
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least one respect.. The assessment of the model through correlational analysis thus gives conflicting

results.

Table 21 was included simply to give the reader an indication of how the other job performance

measures relate to one another.

4.4.2 Graphical Representation of the Estimated Logistic Models. The preceding regres-

sion results and correlational analyses were helpful in providing insight as to how the predictors

"potentially influence PC, and how the aggregate variables (computed and predicted) relate to other

job performance measures. This section is intended to provide additional insight into the estimated

model by providing a graphical representation of the fitted models. Figure 23 shows tile fitted

.V response curve for the final model to provide a graphical representation of the relationship between
r

experience and PC. It is plotted over the effective range of the predictor, experience (one to 17(

months). Figure 24 shows the plotted surface for the full second-order model prior to the stepwise

.* regression, to show the relatively mild effects of aptitude and interaction on estimated PC. Recall

that in the stepwise regression, the aptitude terms were dropped. The full model is likewise plotted

over the effective range of predictors, aptitude (M score 45-99) and experience (one to 170 months).

The fitted response surfaces were obtained by entering the logistic model parameter esti-

mates into the logistic model function. Equation 27 shows the equation for the final model, and

Equation 28 shows it for the full second-order model.

PCU'a4gV,..t M..I 1 + e+- (27)

where
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P"•WaVq,..I Iod.1 = predicted weighted average productive capacity

from the final model after the slepwise procedure

X2 months of job experience

•o = -- 1.234482

= -. 000131

5= .019038.

PCwavYg.FI, M.,d, 1 + eA +/" + 3i+a 34'l+• 35+2 (28)

where

FCwavr.II m.d.1 = predzcted weighted average productive capacity

fror. the full second-order model

ZI = ASVAB Mechanical percentile score
/

Z2 = months of job experience

= -2.969180

/31 = -. 000210

/32 = -. 000124

= -. 000061

/•4 = .039573

/5= .022894.

To increase the interpretability of the fitted response curve and surface, the entire surfaces

were rescaled to zero/one space much like the edited task-level PC values. This was to ensure

a minimum predicted PC of zero and a maximum of one so that PC could be interpreted as a

proportion of maximum possible output. Equation 29 mathematically shows the equation for the
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rescaled surfaces. The rescaled response surfaces are shown in Figure 25 and Figure 26 for tile final

and full models, respectively.

P ag - PCajgPCwaCag,, (29)
SPCvg, - PCwavg,,,,

where

•wav .... 1.,d = rescaled predicted average mean productive capacity

PCwovg,.. = Minimum Wialle of PCwa1 g

PCwavg•,. = Maximum value of PCwav9.

The plotted response curves and surfaces all show PC initially increasing with experience

until it reaches a maximum, and then begins to steadily decrease. In ,he case of the plotted surface

for the full second order model, this is shown to occur at all levels of aptitude. The plots for the

full model also show PC generally increasing with aptitude at all levels of experience. There ioes

appear to be a peak and a slight decrease in PC with increasing aptitude. Once again, in reference

to the plot of the full model, very little interaction was present, as indicated by the fairly constant

effects of one predictor with varying levels of the other.

Before drawing conclusions, it is important to recall that the models did not fit the data very

well (for the full model R2 = .16, and for the final model R2 = .13). Also, recall from Table 9,

the two-way distribution of aptitude and experience, that there were relatively few data points

indicating ex erience beyond 96 months. The model must thus be interpreted cautiously beyond

this point. T ese two facts suggest that the response curves and surfaces should not. be viewed

with exactness, but in general terms. They should serve only to provide some possible insight as

to how the factors might effect eachother.

The decreasing PC with increasing experience over a portion of the curves and surfaces was

an unexpected result. This seemed to indicate that there is some point in an airnian's career
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where he or she may begin to exporience skill degradation, or decreasing PC or. the types of

tasks studied. The estimated logistic function for the final model was put into GINO (General

INteractive Optimizer) to identify exactly where the maximim PC point, on the curve occurs, and

thus where the performance degradation may begin (22). Maximum PC occurs on the surface at

about 71 months of job experience. This seemed to indicate that after approximately six years of

job experience, the capacity to perform hands-on production-type job tasks decreases for 454X1

personnel. This result might be explained by the fact that Air Force enlisted personnel typically

begin to make the transition into supervisory roles at around the six year point. This means they

begin to spend less time practicing production-type tasks so skill degradation might reasonably be

expected. This is not to say that an airman's overall performance decreases after the six year point,

only performance on the types of tasks studied under the Productive Capacity Project. Hands-on

performance on such types of tasks becomes decreasingly important as airmen advance in grade

and move on to supervisory roles. A more appropriate nmeasure of performance for more senior

members would most likely have to include measures of their ability to supervisor.

A final point to be made concerning Figure 24 and Figure 26 for the full model is that

maximum PC occurred near an aptitude score of 84, according to GINO. In looking at the plotted

surfaces, there does not seem to be a signiii-ant decrease in performance beyond this score. There

is simply no strong indication that PC truly does peak and then decrease with increasing aptitude.

Since the model provided significantly less than a perfect, fit, it may simply be enough to note that

PC tends to increase with aptitude. in general, at all levels of experience.
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V. Summary, Conclusions and Recommendations

Recognizing that the Air Force could greatly benefit from acquiring the ability to forecast

the future job performance of its personnel, this research effort set out to develop experimental,

descriptive regression models for predicting the job performance of personnel in specialty 454X 1,

Aerospace Ground Equipment. Hopefully, this modeling activity will serve to help Air Force plan-

. " ners take, another step in their iterative and on-going quest for adequate job performance models.

The research objectives, as presented in Chapter 1, were asfollows:

1. Formulate a Productive Capacity Measure from Estimated Task Performance Times

2. Select a Task Weighting Scheme

3. Aggregate the Task-Level .Data into an Overall Productive Capacity Measure

4. Develop Prediction Models

Data for the analyses were collected by the Air Force under its Productive Capacity Project

(21). The primary dependent (response) variables were raw estimated task performance times for

airmen in specialty 454X1, and the independent (predictor) variables were mechanical aptitude and

job experience.

The following sections provide a brief recapitulation of the research methods used to meet

these research objectives and contain a summary of conclusions and recommendations for further

research.

5.1 Summary and Conclusions.

".5 1.)1 Formulating a Productive Capacity Aftasure from Estimated Task Performance Times.

The primary response data analyzed were raw estimated task performance times for 204 airmen

in specialty 454X1. Aerospace Ground Equipment. The estimated times were provided by the

airmens' supervisors for 50 job tasks commonly performed by personnel in the specialty. An initial

/
,,, 111

.,1' /



research objective was to determine how to transform the task-level time data in'o measures that

are interpretable and able to be aggregated across tasks. At the task level, an interpretable measure,

PC, was formulated according to the method proposed by Carpenter and others, t/t (5:21). !n the

formulation, tI represented an estimate of the fastest possible time in which a given task could be

completed, and t represented the estimated time for an airman to complete that task. The measure

can be interpreted as an individual's output as a proportion of maximum possible output.

Several considerations had to be accounted for in computing task-level PC. Most importantly,

the raw estimated performance times from which the PC measures were derived tended to be highly

variable with an often unbelievable range of values within a task. This indicated a need for editing

to control for influential outliers. As a result, several stages of data editing were applied to the )aw

estimated times and to the computed PCs to obtain reasonable distributions of the task-level PCs.

5.1.2 Sepcthng a Task Weighting Scheme. Since PC is a quantity-based measure of work

output capability, it seemed appropriate to weight the trsks by the relative amount of time a men

spend doing them on average. This was to account for the fact that airmen may spend varying

amounts of time on different tasks, some of which they are productive on, and some on which they

are not. Tasks were weighted by a factor derived through averaging Average Percent Time Spent

Performing Duties data (collected by the Occupational Measurement Squadron) across relevant

skill levels. Duty area weight5 were applied to tasks from that area. Greater weight went to those

tasks performed most frequently.

The applied weighting scheme had little effect on the computed aggregate variables. The

weighted average measures, when compared to their unweighted counterparts. had highly similar

descriptive statistics. The weighted and unweighted versions of the variables were also highly cor-

related. The conclusion is that the applied weighting scheme had no noticeable effect on aggregate

PC.
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5.1.3 Aggregating the Task-Level Data into an Overall Productive Capacity Measure. At

the overall or aggregate level, PC was defined and computed as a weighted average of the task-

level PC values for each experimental subject. Along with weighted averaging, the task-level PC

data were aggregated through simple, unweighted averaging for comparison purposes. The need

for aggregation existed because overall measures are of more importance in the bigger scheme Iof

manpower modeling and planning. Task-level information is important but manpower decisions

usually cannot be made based on an individual's predicted performance on single tasks. Also,

modeling at the task level for each of the approximately 250 AFSs would simply be too cumbersome.

Because jobs tend to be multifaceted and dynamic, aiid because task-level modeling is potentially

too burdensome, it was desirable to compute and model an aggregate measure.

5.1.4 Developing Prediction Models. Both task-level and aggregate PC measures were

regressed on aptitude and job experience using a second-order logistic model. The aptitude variable

used was the Mechanical percentile score from the ASVAB obtained by each subject upon applying

for enlistment. The experience variable used was the subjects' self-reported job experience at the

time the estimated times were collected.

At the task-level, R 2 s were consistently low for the logistic model, ranging from .01 to .13.

This may indicate that there are other predictor variables influencing PC that were not addressed

in this thesis. Another possible explanation of the low R's is that the assumption of validity and

* reliability of the PC data collection instrument and method is not sound. Supervisors are known

to be subject to many types of biases which affect their judgements concerning the performance of

their personnel (6:82-84). The low R2s may be indicative of the fact the supervisors are introducing

noise into the data from such biases, and thus adversely affecting validity and reliability, and thus

model fit.

Residual analysis of the aggregate logistic model indicated that it was reasonably appropriatcv

for the data. The model for predicting the aggregate measure yielded result~s that. were complarable
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to the task-level model results. Experience seemed to be a significant predictor while aptitude

and the aptitude/experience interaction did not. The model R 2 for the full second-order aggregate

logistic model was .16. The full second-order model was subjected to forward stepwise regression

which indicated that all terms involving the aptitude variable could be dropped fromt the model.

The final model involved a, constant intercept term and linear and] quadratic experience. terms. The

final model yielded an R' of .13.

After the logistic model parameters were estimated, predicted PC values were computed for

the aggregate measure. These were correlated wi~h other subjective and objective job performance

measures collected uinder the Productive Capacity Project. Thle predicted values showed correla-

tions significantly different from zero for each measure.

Fitted response surfaces for the estimated aggregate models were plotted and they indicated

a pronounced peak for PC with respect to experience. There was some evidence that PC may

begin to decrease for AGE personnel after about the six year point in their career. This muay be

reflective of skill degradation which may occur as airmen lose practice on hands-on type work as,

the transition tc supervisory roles is made. It may also be the result of having only a few data

points for higher levels of experience, or it may be simply anl artifact of the ielatively low degree

of model fit.

Overall, the level of model fit (R 2 ) tended to be low, but comparable to that found for similar

studies (5) (13) (38). R's of the current magnitude indicate that more work must be done to create

rnoreý Irobust prediction models.

,5.2 ~ecommendations.

eprevious~ section provided a brief summary of the research objectives, methodology and

finding'... It did not, however, discuss the additional research questions which arose during the effort.

As mentioned in the first chapter, exploratory or descriptive research such as this often spawns as.
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many research questions as it answers. This section will address some of the issues which came to

the forefront in the current effort. These issues will be discussed in the context of recommendations

for further research.

5.2.1 Formulating the Productive Capacity Measure. The current emphasis in Air

Force job performance measurement is on using performance timt; data in deriving job performance

* measures. This is because most Air Force manpower modeling and planning involves performance

criteria such as sortie generation rates and wean time to repair aircraft. Such measures are quantitv-

based and therefore indicate the need to assess and predict work output referenced to time. As

a result, the Air Force is researching cost-effective methods for obtaining work performance time

data.

As indicated in the current analyses, the current method of obtaining the performance titme

estimates (through free response supervisor e-timation) yielded ranges of values which were exces-

sively wide (see Table 10). This may be due in part to that fact that supervisors provided their

* / ,estimates in a virtual free response format. This means that they were unconstrained in reference

to the estimates they could make. In future studies, it is recommended that supervisors be forcedV /

to limit their time estimates to a pre-established reasonable range. A reasonable range of estimates

could be derived using SMEs, much like Leighton and others used SMEs to develop benchmark

times (21).

Other recommendations involve the formulation of PC measures from the task performance

time data. One potential problem with creating PC measures according to the Carpenter and

others formulation, t/t, is that the computed task-level PCs for each individual are in part based

on the single task-level ineasure t'. Since the computed PCs are based on them, care m|ust be taken

to obtain t" values that. are accurate so that the resulting PC values are properly interpretable. In

the current research, it was pointed out that the raw estimated times, t, for each task tended to

be highly variable indicating inconsistencies in the supervisors' opinions about what a reasonable
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range of performance should be. This places some doubt in the accuracy of the estimated times,

especially those near the fast and slow end of the estimated range. Since t* was computed as

the .99x (minimum estimated time for the task (after editing)), there is some question as to the

credibility of such t" values. An appropriate way to address this problem may be to compute the

PC measure as in time studies where PC is computed as (ta,, /t) x 100. Computed in this fashion,

PC for a task is not dependent on a single measure t*, but on the task average, tatg.

Also, it is important to note that Carpenter and others' PC formulation is not a linear

transformation of the time variable, t, from which it is computed. This is what prompted AL/HRM

to formulate PC as t/1, an inversion of the Carpenter and others formulation (7). A nonlinear

transformation can have the effect of influencing the degree of linear relationship between a variable

and another. It is recommended that the nonlinearity introduced by the Carpenter and others'

formulation be studied to determine its effect, and whether a linear transformation should be

considered in future studies.

5.2.2 Selecting a Task Weighting Scheme. Because of the nature of the PC measure

(quantity-based), it is recommended that. relative time spent measures continue to be considered

as a weighting factor. The PC measure, as defined, is indicative of a worker's output relative to

some standard. In the current effort, that standard was t1, an estimate of the fastest possible

performance time. As such, the PC measure at the task-level must somehow be given different

weights reflective of how often the tasks are performed. This is so that an aggregate measure

which represents an airman's actual capacity to produce (given the average job scenario) can be

computed. Recall that in the current effort, weights were derived for joh duty areas as opposed to

individual tasks. This was due to the unavailability of task-level data. It is recommended that an

attempt be made to obtain and use rTlativ, tine spent data derived for individual tasks as opposed

to those for an entire duty area. This will further differentiate tasks on level of importance and

may yield a more meaningful aggregate PC measure.
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5.2.3 Aggregating the Task-Level Data into an Overall Productive Capacity Measure.

One problem with averaging (both weighted and unweighted) task-level measures is that there is

significant information loss. In this thesis for instance, the actual response data for each individual

was a row vector of about 50 task-level PC measures (see Figure 17). By weighted averaging, these

were collapsed into a single measure. In collapsing the data, any unique information provided in

individual task ratings was lost or dampened. Perhaps a reduction in the dimensionality of the

response from 50 measures per person to one measure per person was too drastic.

One alternative to averaging is to treat the 204 x 50 (subjects x tasks) response matrix

as a multivariate analysis problem. A common dimensionalit4-reduction technique that could be

applied is factor analysis. According to Dillon and Goldstein,!

Factor analysis attempts to simplify complex and diverserelationships that exist among
a set of observed variables by uncovering common dimensions or factors that link to-
gether seemingly unrelated variables, and consequently provides insight into the under-
lying structure of the data. (11.53)

In other words, factor analysis could be used to reduce the ýriginal set of 50 response variables

to a smaller subset of factors that account for most of the variance in the task-level data (11:23).

In factor analysis, a factor represents an underlying qualitatve dimension like a coordinato axis,

which defines the way in which different variables differ on th ,t dimension (11:60). Factor analysis

results in factor scoring coefficients which can be used to compute factor scores given known levels

of the analyzed var.,tbles. Factor analysis basically takes advantage of the underlying correlational

structure in the variables under analysis. Factors are derived such that. correlated variables tend

to load on the same factors. Factors, then, represent common dimensions that correlated variables

share. For a more complete discussion of factor analysis, refer to Dillon and Goldstein (11).

The response matrix in the current study could be factor-analyzed to determine any factor

structure that could be used to reduce the number of response variables to a set of less than 50

"factors. Prediction models could then theoretically be develcped to predict computed factor scores.

Factor analysis seems to be a reasonable midpoint between collapsing the data into a single measure
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through averaging, and modeling with task-level data. The analyst or manpower modeler would of

course be left with the non-trivial task of interpreting the factors -- d resulting factor scores.

Another alternative for reducing the response matrix to less than 50 variables would be to

compute aggregate measures at the duty area level. Referring to Table 4, there are 20 duty areas

for the AGE specialty, 10 of which were represented by tasks in the current effort. The reduction

from 50 task-level variables to 10 or 20 duty area variables would be substantial. Aggregating

tasks from the same duty area, perhaps through weighted averaging, would provide aggregate

variables representing reasonable subsets of tasks. These duty area aggregate variables could then

be modeled.

In summary, multivariate analysis techniques and duty area aggregation provide other alter-

natives for reducing the dimensionality of the response data. The attractiveness of such alternatives

is that they may not be subject to the same degree of information loss as in the case of averaging

all the task-level data for an individual task into a single measure.

5.2.4 Developing Prediction Models. Recall that the regression models developed in this

thesis accounted for at mostt 11)7I. or ti-? vari,_ ze 1i Llve rpsponse, PC (maximuni R2 = .16). This

means that at least 84X of the variance in the response remains unexplained by the developed

models. To put this in context, corsider Figure 27. Figure 27 indicates that there is a relatively "

enormous portion of variance in the response which remains to be explained. Recall that these

results were comparable for previous PC studies (5) (13) (38). This means that there is probably

significant improvement to be made in all phases of the job performance model development process.

A likely place to start improving the development of such models is in the job performance

measurement realm. But, as has been proven over time, it is extremely difficult to develop a sound

yet cost efficient system for collectinrg valid and reliable job performance data. This problem has

been so pervasive in Indtastrial/Organizational Psychology that it has earned the fear-instilling

name th- crit(rio?? problem. Volumes have been written on job performance measurement and the
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Figure 27. Pie Chart Representing the Explained vs. Unexplained Variance in Productive Ca-
pacity Given the Current Models

criterion problem. Thie topic of job performance measurement cannot be given the attention it is

due in this limited space, thus the reader is referred to Reference (6) for an introduction to the

topic.

Another likely area to be considered when seeking to improve job performance models is

the predictor arena. Only two potential predictors were considered in the current effort, aptitude

and experience. As with job performance measurement, volumes have been written concerning the

relationship between numerous predictor variables and job performance. But, remember that PC

is a fairly unique job performance measure in that it is supposed to measure a worker's capacity

to produce, not how much lie or she actually produces. This implies that many of the personality

traits which w~ould he expected to influence productivity would not be expected to influence PC.

Such measures include worker mnot ivation, job interest, work environment, and Job satisfaction.

There still remlain numerous potential predictors which would be expected to influence PC.

These include the type and amnount of technical school training, the type and amount of on-

the-job training (OJT), the availability and qualit~y of written technical guidance, the amount, of
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technical interaction with highly-skilled individuals, trouble-shooting and diagnostic ability, and

general mental ability, just to name a few. Many such predictors could be considered for inclusion

into Air Force job performance models. They may perhaps help to explain additional variance in

the response.

A final area for model improvement might be the type of model itself. Perhaps linear

regre•sion-based models are simply insufficient for modeling the job performance of human be-

ings. Humans are obviously highly complex entities with each being motivated and affected by

countless factors. Added tc this, the countless factors each influence different people in different

ways. For these reasons alone, linear regression models may never be able to explain the majority'

of the variance in job performance.

In summary, there is significant improvement to be made in job performance modeling. Pos-

sible improvements could be made by improving the validity and reliability of the response (job

performance measures), by considering other potential predictors and by considering differe,*t types

of mathematical or maybe even non-mathematical models.
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Apeni A.441TssSuidUdrth-rdcieCpct rjc

Appendi A. : 454X1 Tasks Studied Under the Productive CapacityPojc

Project

Task ]Description
E120 Make entries on supply iss-ue and turn-in forms.
E143 Make entries on AFTO Form 350 (Reparable Item Processing Tag).
F153 Perform aircraft support air-conditioner visual and

service inspection.
F154 Perform an aircraft support generator service inspection.
F 155 Perform a service inspection on a load bank.
F157 Perform bomblift visual and service inspection.
F 162 Perform a service inspection on a hydraulic test stand.
G 171 Ferform aircraft support air compressor periodic inspection.
G 179 Perform combustor cap portion of a gas turbine compressor

periodic inspection.
G 181 Perform hydraulic test stand periodic inspection.
H202 Fabricate wiring.
11203 Isolate malfunction within electrical circuitry other than

integrated or solid state.
11209 Measure resistance in AGE electrical systems by checking

various circuits in the ignition system of the MC-2A.
11215 Perform AGE electrical systems operational checks.
11236 Research T.O.s, charts, or diagrams for electrical maintenance

instructions.
H237 Solder electrical system wiring.
11238 Cut an electrical system wire in half and splice it together

into a circle, using one crimp-type splice and one soldered heat
____shrink splice.

1247 Adjust distributor points.
1248 Adjust reciprocating engine fuel system components.
1251 Adjust turbine engine fuel system components.
1255 Change the generator in an NF-2.

- -1260 Clean commutator and slip rings on the generator of the NF-2.
1264 Troubleshoot the NF-2 generator for the following symptoms of

malfunctions: (1) the engine will not start when cranked, and
(2) the engine starts but backfires at the carburetor.

1275 Remove or install a carburetor on an MC-2A gasoline engine.
1283, Remove and install engine exhaust manifold, seals, gaskets,

and common hardware.
1284 Remove and replace aii alternator belt.
1286 Remove and install engine fuel pumps on '.he NF-2.
1299 Remove and install engine.

A 1300 Replace the flare fitting on a fuel line.
J1332 Isolate the possible heater system malfunctions associated

with a discrepancy that reads "burner will not ignite."
J 340 Remove the burner control valve from an AGE heater.
J1347 Remove and install heater engine.
J1355 Remove and install temperature selector valve.

rL40-6 -Isolate hydraulic systems malfunction.
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Table 22: (continued)

Task Description

L421 Remove apd install hydraulic lines on B-1 stand.
L436 Replace O-rings in hydraulic systems component.
L437 Research T.O.s, charts, or diagrams for AGE hydraulic systems

maintenance.
M444 Assemble bleed air hose.
M446 Troubleshoot the MC-1A compressor for the discrepancy

"Compressor fails to unload at 3600 psi."
M447 Perform AGE pneumatic system operational check.

N475 Isolate brake sy Lem malfunction.
N477 Repack wheel bearings of one wheel on AGE equipment (NF-2).
N486 Remove and install AGE brake pads.
N487 Remove and install AGE fuel tank.
N488 Change an AGE tire and tube assembly.
N494 Remove and install one six inch bolted hinge.
N503 Look up the part number, source code, and work unit code to

requisition a new axle assembly for an MC-2A compressor
(with date plate containing the following information:

MFG- Davey Compressor Company, Contract #-DSA 700-74C-9004,
Serial #-16160, Reg #-4310-75-D18-6160, Model #-2MC-2,
Part #-27391).

P549 Perform an operator's inspection of an AF vehicle, completing
AFTO Form 373.

P554 Pick tp and deliver -60.
P555 Prepare AGE (NF-2) for shipment during a training exercise

or mobilizaticn.
The above task descriptions were taken from Reference (24)
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